| Bill Allombert on Mon, 05 May 2025 15:21:30 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: reversing a series modulo |
On Sat, May 03, 2025 at 02:38:33PM -0400, Max Alekseyev wrote: > Hello, > > Reversing a series and taking it modulo 5 works, but not the opposite way > around. Why? > > ? f = x + x^2 + 4*x^6 + 4*x^7 + x^11 + x^12 + 4*x^16 + 4*x^17 + O(x^21) > %1 = x + x^2 + 4*x^6 + 4*x^7 + x^11 + x^12 + 4*x^16 + 4*x^17 + O(x^21) > ? serreverse(f) * Mod(1,5) > %2 = Mod(1, 5)*x + Mod(4, 5)*x^2 + Mod(2, 5)*x^3 + Mod(4, 5)*x^5 + Mod(4, > 5)*x^6 + Mod(2, 5)*x^8 + Mod(3, 5)*x^10 + Mod(3, 5)*x^11 + Mod(4, 5)*x^12 + > Mod(4, 5)*x^17 + Mod(3, 5)*x^18 + O(x^21) > ? serreverse(f * Mod(1,5)) > *** at top-level: serreverse(f*Mod(1,5)) > *** ^---------------------- > *** serreverse: impossible inverse in Fl_inv: Mod(0, 5). The formula used by PARI is g=intformal(1/subst(f',x,g)) which involves division by small primes (when integrating) What you can do is ? serreverse(f*(1+O(5^2)))*Mod(1,5) %34 = Mod(1, 5)*x + Mod(4, 5)*x^2 + Mod(2, 5)*x^3 + Mod(4, 5)*x^5 + Mod(4, 5)*x^6 + Mod(2, 5)*x^8 + Mod(3, 5)*x^10 + Mod(3, 5)*x^11 + Mod(4, 5)*x^12 + Mod(4, 5)*x^17 + Mod(3, 5)*x^18 + O(x^21) Cheers, Bill