| Bill Allombert on Tue, 27 May 2025 00:40:59 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: How to determine Mod(a,b) with t_COMPLEX b? |
On Tue, May 27, 2025 at 12:01:44AM +0200, hermann@stamm-wilbrandt.de wrote: > $ gp -q > ? a=1+4*I;b=3+2*I; > ? a/b > 11/13 + 10/13*I > ? Mod(a,b) > *** at top-level: Mod(a,b) > *** ^-------- > *** Mod: forbidden division t_COMPLEX % t_COMPLEX. > *** Break loop: type 'break' to go back to GP prompt > break> > > > The minimal residue of 1+4*I modulo 3+2*I is the yellow point -I in the > example: > https://en.wikipedia.org/wiki/Gaussian_integer#Describing_residue_classes > > How can minimal residue of an input gaussian integer modulo a gaussian > integer be computed in PARI/GP? nf=nfinit(i^2+1) a=1+4*i;b=3+2*i; nfeltdivrem(nf,a,b) %4 = [[1,1]~,[0,-1]~] Cheers, Bill.