| Bill Allombert on Sat, 05 Jul 2025 23:34:00 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: What’s the equivalent of this py_ecc code for untwisting the ʙɴ128 curve in Pari/ɢᴘ ? |
On Sat, Jul 05, 2025 at 10:56:31PM +0200, Laël Cellier wrote: > Without using mathematical formulas, the question is not understandable : > the curve is over a very special field. However, you can still use > https://pari.math.u-bordeaux.fr/archives/pari-users-2507/msg00029.html to > display it correctly, So first define the field and the point: p=21888242871839275222246405745257275088696311157297823662689037894645226208583; i=ffgen((i^2+1)*Mod(1,p)); X=11559732032986387107991004021392285783925812861821192530917403151452391805634*i+10857046999023057135944570762232829481370756359578518086990519993285655852781; Y=4082367875863433681332203403145435568316851327593401208105741076214120093531*i+8495653923123431417604973247489272438418190587263600148770280649306958101930; pt = [X,Y]; \\ then define the target field, the target curve and the map from Fp[i] to Fp[w]: w=ffgen((w^12 - 18 * w^6 + 82)*Mod(1,p)); E2 = ellinit([0,3],w); map = ffembed(i,w); \\ define the isomorphism: twist(pt)= [ffmap(map,pt[1])*w^2, ffmap(map,pt[2])*w^3]; \\ apply to pt pt2=twist(pt); \\ check ellisoncurve(E2,pt2) %11 = 1 \\ success! Cheers, Bill.