| hermann on Wed, 09 Jul 2025 22:00:23 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Implementation of functions for "Integer partitions detect the primes" paper |
On 2025-07-08 22:09, Bill Allombert wrote:
You should do M1(n)=my(s=0);fordiv(n,d,s+=d);s; But this function is just sigma(n)
Ok.
? M2(n)=s=0;for(m=1,n,forpart(v=m,if(v[1]<v[2],for(d=1,n\v[1],r=n-d*v[1];if(r%v[2]==0,s+=d*(r\v[2])))),[1,m],[2,2]));s;As I understand this function is (sigma(n,3)-(2*n-1)*sigma(n))/8 which is much faster to compute.
That does not work: ? M1(n)=sigma(n); ? M2(n)=(sigma(n,3)-(2*n-1)*sigma(n))/8; ? T1(n)=(n^2 - 3^n + 2)*M1(n) - 8*M2(n); ? T1(3) -72 ? Regards, Hermann.