Bill Allombert on Mon, 21 Jul 2025 21:51:36 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: question on correct mathematical construct to hold coordinates
|
- To: pari-users <pari-users@pari.math.u-bordeaux.fr>
- Subject: Re: question on correct mathematical construct to hold coordinates
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 21 Jul 2025 21:51:26 +0200
- Delivery-date: Mon, 21 Jul 2025 21:51:36 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/simple; d=math.u-bordeaux.fr; s=2022; t=1753127494; bh=32EiRvmvqAqU0Bo9l7Bs0hU815XRVn1+d+TeL/UrJec=; h=Date:From:To:Subject:References:In-Reply-To:From; b=ogwXIyeBjEXqdtsOCb2tlDen0PEO/QV4pNA0F76mdzaQbZj67RYna2z3JWast1pSR uX/BXnku0nq+HmfQeDfSf+YwqlRuC9Z4UEn+PyKMaM8hewJaKZ27yvEamnNjUdRghF PeoOPkp6h1ZRQtwwXURuXTA6wPgPhXQ/rrIS0B+MLvBCJHnUDRjeohQSMK01tfMDzo BW1eAPsysluPHIqawZekqpU3ZNgZ3anXOMeAHGk1V3l0Ju+74/gT9Zc6Exec2iRYeP j2tO26RbkXkKdNWwFgmVURQQKLZ6Vds4sfz/fRfAsz6OQ0Jf4psuIrERY7Flbe+vrc FWF2KQd1kGFwCpO/oxJyg3SO7E4b/h8BFSRNfGLykAXvL/5TgPOVNsn4SajtGLIwq9 UEeeJuogrdwcrugTUJn1vTFq/KLNLh8N8fT07IIcrLqA6pP9y9aj2FtCpNm3zDumvv r1Z0xdbN75VEOuWDOZpv5Ktyyp7PbltOeVrFxLFDzkvcI96scKvRHZ2+OjqZQGoBS1 6ZIOzKUmYw7CKB07903N7Hg+MMuUFKS3tSpqhamAEPu6Bx+g2Z15SatcrDdLDWJNcP tQr2QQeqsUC+iYd+UIZ0dWgDGgS+ipKtFK4gsFjnjB1jBExI59GxyHhBQztXoT76lc g1mwiTuQCDy7UldpCmZAaWsM=
- In-reply-to: <3d2f6e44-1b23-4f43-a135-402f468011b6@gmail.com>
- Mail-followup-to: pari-users <pari-users@pari.math.u-bordeaux.fr>
- References: <3d2f6e44-1b23-4f43-a135-402f468011b6@gmail.com>
On Mon, Jul 21, 2025 at 12:33:53PM -0700, American Citizen wrote:
> Hello all:
>
> My experiment with trying to use number fields failed to keep accurate
> accounting of rationality, upon rotations of coordinates has failed, most
> likely due to my lack of knowledge of what polynomials are legitimate or not
> for initializing the field. For example nfinit(x^2-1/2) didn't work too well
> for me.
What you can do is:
- multiply (!) all the polynomials you need to take the roots of.
- call nfsplitting on the product to get a polynomila defining a common field.
- for each polynomials call nfisincl to get the roots of the polynomial
in the common field.
? V=[x^2-1/2,x^2-5/3];
? P=nfsplitting(vecprod(V))
%15 = x^4-16*x^2+49
? R=[Mod(nfisincl(v,P),P)|v<-V]
%16 = [[Mod(-1/14*x^3+9/14*x,x^4-16*x^2+49),Mod(1/14*x^3-9/14*x,x^4-16*x^2+49)],[Mod(-1/3*x^2+8/3,x^4-16*x^2+49),Mod(1/3*x^2-8/3,x^4-16*x^2+49)]]
Cheers,
Bill.