|
American Citizen on Wed, 22 Oct 2025 21:13:39 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
|
Question on finding a Riemann Zeta function zero for high values of s
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Question on finding a Riemann Zeta function zero for high values of s
- From: American Citizen <website.reader3@gmail.com>
- Date: Wed, 22 Oct 2025 12:13:32 -0700
- Delivery-date: Wed, 22 Oct 2025 21:13:39 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20230601; t=1761160415; x=1761765215; darn=pari.math.u-bordeaux.fr; h=content-transfer-encoding:in-reply-to:from:content-language :references:to:subject:user-agent:mime-version:date:message-id:from :to:cc:subject:date:message-id:reply-to; bh=485bQyxjVA3Iqu7VhBtoxh1OxouN3wNwr1WCgWWJMLo=; b=YVU/XVdj5tzJcMEECH2nTdJonn5UTgd+s4eYPRPh1WnW0uMSsRi7OVIG2tjKufEovG WD66WZP1Xxy1x/QwPgPq58Gm3lg6wrOVIg/xIF49y75gJoHZTRnAgvnxwgzIvNLGiV02 WR/D/c3FTHJsHuPHwHraFdQMIzUkFpkNBCSUszkujwGzSfl7sPc0rTDAQu4tgrpNeDW3 am265SE8GtddDBCOWo7flnqAJCWOTS8lXaQqB1oBCLpCX8M0Xga6P6StN32EDtKkHE2c XlS/yeSJ9769GfRqbE3vN7fSQy6KhwuIIwZtYhW7meZsNqNtFrvotZIZ5VxhHGgRtLjn 05DQ==
- In-reply-to: <aPjvv3ONOLE3BeIt@seventeen>
- References: <0e5f0dbff5cf4bcf48f7ac9d829e178f@stamm-wilbrandt.de> <aOwKVfNxQcLiVYu5@seventeen> <97ec5bc016a560ddd037faec9620ebc2@stamm-wilbrandt.de> <aPjvv3ONOLE3BeIt@seventeen>
- User-agent: Mozilla Thunderbird
Let s = 1/2 + 1370919909931995308226.68016095...
This value of s is close to a zero. I am trying to refine this value to
38 places precision.
However even using precision = 400,000 digits, I still cannot find
zeta(s) I keep getting this error:
eta: precision too low in mpcosm1.
Are there any short cuts here?
I was looking at https://www-users.cse.umn.edu/~odlyzko/zeta_tables/zeros5
In particular the zeta zeroes are close together on this part of the
number line.
My curiosity was driven by Lehmer's Phenomena where two zeroes are close
together, but looking at Odlyzko's table, this appears to be a miscue,
the higher up a person goes on the critical line real(s) = 1/2 the
zeroes do pack closer and closer together as can be seen here.
It would be nice to be able to calculate zeta(s) for values given in his
10^22 table and refine it to 38 digits accuracy.
Randall