Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - basemath - Flx.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.1 lcov report (development 30213-f9b05da6c0) Lines: 2553 2910 87.7 %
Date: 2025-04-26 09:18:30 Functions: 304 358 84.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /* Copyright (C) 2004  The PARI group.
       2             : 
       3             : This file is part of the PARI/GP package.
       4             : 
       5             : PARI/GP is free software; you can redistribute it and/or modify it under the
       6             : terms of the GNU General Public License as published by the Free Software
       7             : Foundation; either version 2 of the License, or (at your option) any later
       8             : version. It is distributed in the hope that it will be useful, but WITHOUT
       9             : ANY WARRANTY WHATSOEVER.
      10             : 
      11             : Check the License for details. You should have received a copy of it, along
      12             : with the package; see the file 'COPYING'. If not, write to the Free Software
      13             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      14             : 
      15             : #include "pari.h"
      16             : #include "paripriv.h"
      17             : 
      18             : /* Not so fast arithmetic with polynomials with small coefficients. */
      19             : 
      20             : static GEN
      21   970230209 : get_Flx_red(GEN T, GEN *B)
      22             : {
      23   970230209 :   if (typ(T)!=t_VEC) { *B=NULL; return T; }
      24      683016 :   *B = gel(T,1); return gel(T,2);
      25             : }
      26             : 
      27             : /***********************************************************************/
      28             : /**                              Flx                                  **/
      29             : /***********************************************************************/
      30             : /* Flx objects are defined as follows:
      31             :  * Let l an ulong. An Flx is a t_VECSMALL:
      32             :  * x[0] = codeword
      33             :  * x[1] = evalvarn(variable number)  (signe is not stored).
      34             :  * x[2] = a_0 x[3] = a_1, etc. with 0 <= a_i < l
      35             :  *
      36             :  * signe(x) is not valid. Use degpol(x)>0 instead. */
      37             : /***********************************************************************/
      38             : /**                      Conversion from Flx                          **/
      39             : /***********************************************************************/
      40             : 
      41             : GEN
      42    37101927 : Flx_to_ZX(GEN z)
      43             : {
      44    37101927 :   long i, l = lg(z);
      45    37101927 :   GEN x = cgetg(l,t_POL);
      46   242502446 :   for (i=2; i<l; i++) gel(x,i) = utoi(z[i]);
      47    37088183 :   x[1] = evalsigne(l-2!=0)| z[1]; return x;
      48             : }
      49             : 
      50             : GEN
      51       71279 : Flx_to_FlxX(GEN z, long sv)
      52             : {
      53       71279 :   long i, l = lg(z);
      54       71279 :   GEN x = cgetg(l,t_POL);
      55      277645 :   for (i=2; i<l; i++) gel(x,i) = Fl_to_Flx(z[i], sv);
      56       71279 :   x[1] = evalsigne(l-2!=0)| z[1]; return x;
      57             : }
      58             : 
      59             : /* same as Flx_to_ZX, in place */
      60             : GEN
      61    36377825 : Flx_to_ZX_inplace(GEN z)
      62             : {
      63    36377825 :   long i, l = lg(z);
      64   227242293 :   for (i=2; i<l; i++) gel(z,i) = utoi(z[i]);
      65    36369446 :   settyp(z, t_POL); z[1]=evalsigne(l-2!=0)|z[1]; return z;
      66             : }
      67             : 
      68             : /*Flx_to_Flv=zx_to_zv*/
      69             : GEN
      70    65811435 : Flx_to_Flv(GEN x, long N)
      71             : {
      72    65811435 :   GEN z = cgetg(N+1,t_VECSMALL);
      73    65805221 :   long i, l = lg(x)-1;
      74    65805221 :   x++;
      75   704620794 :   for (i=1; i<l ; i++) z[i]=x[i];
      76   328099666 :   for (   ; i<=N; i++) z[i]=0;
      77    65805221 :   return z;
      78             : }
      79             : 
      80             : /*Flv_to_Flx=zv_to_zx*/
      81             : GEN
      82    25239915 : Flv_to_Flx(GEN x, long sv)
      83             : {
      84    25239915 :   long i, l=lg(x)+1;
      85    25239915 :   GEN z = cgetg(l,t_VECSMALL); z[1]=sv;
      86    25235864 :   x--;
      87   278160472 :   for (i=2; i<l ; i++) z[i]=x[i];
      88    25235864 :   return Flx_renormalize(z,l);
      89             : }
      90             : 
      91             : /*Flm_to_FlxV=zm_to_zxV*/
      92             : GEN
      93        2324 : Flm_to_FlxV(GEN x, long sv)
      94        6328 : { pari_APPLY_type(t_VEC, Flv_to_Flx(gel(x,i), sv)) }
      95             : 
      96             : /*FlxC_to_ZXC=zxC_to_ZXC*/
      97             : GEN
      98      104060 : FlxC_to_ZXC(GEN x)
      99      527425 : { pari_APPLY_type(t_COL, Flx_to_ZX(gel(x,i))) }
     100             : 
     101             : /*FlxC_to_ZXC=zxV_to_ZXV*/
     102             : GEN
     103      605835 : FlxV_to_ZXV(GEN x)
     104     2451292 : { pari_APPLY_type(t_VEC, Flx_to_ZX(gel(x,i))) }
     105             : 
     106             : void
     107     2926280 : FlxV_to_ZXV_inplace(GEN v)
     108             : {
     109             :   long i;
     110     7772347 :   for(i=1;i<lg(v);i++) gel(v,i)= Flx_to_ZX(gel(v,i));
     111     2926203 : }
     112             : 
     113             : /*FlxM_to_ZXM=zxM_to_ZXM*/
     114             : GEN
     115        2485 : FlxM_to_ZXM(GEN x)
     116        8351 : { pari_APPLY_same(FlxC_to_ZXC(gel(x,i))) }
     117             : 
     118             : GEN
     119      397977 : FlxV_to_FlxX(GEN x, long v)
     120             : {
     121      397977 :   long i, l = lg(x)+1;
     122      397977 :   GEN z = cgetg(l,t_POL); z[1] = evalvarn(v);
     123      397977 :   x--;
     124     4999132 :   for (i=2; i<l ; i++) gel(z,i) = gel(x,i);
     125      397977 :   return FlxX_renormalize(z,l);
     126             : }
     127             : 
     128             : GEN
     129           0 : FlxM_to_FlxXV(GEN x, long v)
     130           0 : { pari_APPLY_type(t_COL, FlxV_to_FlxX(gel(x,i), v)) }
     131             : 
     132             : GEN
     133           0 : FlxM_Flx_add_shallow(GEN x, GEN y, ulong p)
     134             : {
     135           0 :   long l = lg(x), i, j;
     136           0 :   GEN z = cgetg(l,t_MAT);
     137             : 
     138           0 :   if (l==1) return z;
     139           0 :   if (l != lgcols(x)) pari_err_OP( "+", x, y);
     140           0 :   for (i=1; i<l; i++)
     141             :   {
     142           0 :     GEN zi = cgetg(l,t_COL), xi = gel(x,i);
     143           0 :     gel(z,i) = zi;
     144           0 :     for (j=1; j<l; j++) gel(zi,j) = gel(xi,j);
     145           0 :     gel(zi,i) = Flx_add(gel(zi,i), y, p);
     146             :   }
     147           0 :   return z;
     148             : }
     149             : 
     150             : /***********************************************************************/
     151             : /**                      Conversion to Flx                            **/
     152             : /***********************************************************************/
     153             : /* Take an integer and return a scalar polynomial mod p,  with evalvarn=vs */
     154             : GEN
     155    19858783 : Fl_to_Flx(ulong x, long sv) { return x? mkvecsmall2(sv, x): pol0_Flx(sv); }
     156             : 
     157             : /* a X^d */
     158             : GEN
     159      912995 : monomial_Flx(ulong a, long d, long vs)
     160             : {
     161             :   GEN P;
     162      912995 :   if (a==0) return pol0_Flx(vs);
     163      912995 :   P = const_vecsmall(d+2, 0);
     164      912999 :   P[1] = vs; P[d+2] = a; return P;
     165             : }
     166             : 
     167             : GEN
     168     2599893 : Z_to_Flx(GEN x, ulong p, long sv)
     169             : {
     170     2599893 :   long u = umodiu(x,p);
     171     2599882 :   return u? mkvecsmall2(sv, u): pol0_Flx(sv);
     172             : }
     173             : 
     174             : /* return x[0 .. dx] mod p as t_VECSMALL. Assume x a t_POL*/
     175             : GEN
     176   167468874 : ZX_to_Flx(GEN x, ulong p)
     177             : {
     178   167468874 :   long i, lx = lg(x);
     179   167468874 :   GEN a = cgetg(lx, t_VECSMALL);
     180   167413987 :   a[1]=((ulong)x[1])&VARNBITS;
     181  1111618735 :   for (i=2; i<lx; i++) a[i] = umodiu(gel(x,i), p);
     182   167434912 :   return Flx_renormalize(a,lx);
     183             : }
     184             : 
     185             : /* return x[0 .. dx] mod p as t_VECSMALL. Assume x a t_POL*/
     186             : GEN
     187     6035356 : zx_to_Flx(GEN x, ulong p)
     188             : {
     189     6035356 :   long i, lx = lg(x);
     190     6035356 :   GEN a = cgetg(lx, t_VECSMALL);
     191     6030261 :   a[1] = x[1];
     192    18531685 :   for (i=2; i<lx; i++) uel(a,i) = umodsu(x[i], p);
     193     6029856 :   return Flx_renormalize(a,lx);
     194             : }
     195             : 
     196             : ulong
     197    73122101 : Rg_to_Fl(GEN x, ulong p)
     198             : {
     199    73122101 :   switch(typ(x))
     200             :   {
     201    48363199 :     case t_INT: return umodiu(x, p);
     202      456040 :     case t_FRAC: {
     203      456040 :       ulong z = umodiu(gel(x,1), p);
     204      456040 :       if (!z) return 0;
     205      446296 :       return Fl_div(z, umodiu(gel(x,2), p), p);
     206             :     }
     207      205946 :     case t_PADIC: return padic_to_Fl(x, p);
     208    24096922 :     case t_INTMOD: {
     209    24096922 :       GEN q = gel(x,1), a = gel(x,2);
     210    24096922 :       if (absequaliu(q, p)) return itou(a);
     211           0 :       if (!dvdiu(q,p)) pari_err_MODULUS("Rg_to_Fl", q, utoipos(p));
     212           0 :       return umodiu(a, p);
     213             :     }
     214           0 :     default: pari_err_TYPE("Rg_to_Fl",x);
     215             :       return 0; /* LCOV_EXCL_LINE */
     216             :   }
     217             : }
     218             : 
     219             : ulong
     220     1706862 : Rg_to_F2(GEN x)
     221             : {
     222     1706862 :   switch(typ(x))
     223             :   {
     224      274053 :     case t_INT: return mpodd(x);
     225           0 :     case t_FRAC:
     226           0 :       if (!mpodd(gel(x,2))) (void)Fl_inv(0,2); /* error */
     227           0 :       return mpodd(gel(x,1));
     228           0 :     case t_PADIC:
     229           0 :       if (!absequaliu(padic_p(x),2)) pari_err_OP("",x, mkintmodu(1,2));
     230           0 :       if (valp(x) < 0) (void)Fl_inv(0,2);
     231           0 :       return valp(x) & 1;
     232     1432809 :     case t_INTMOD: {
     233     1432809 :       GEN q = gel(x,1), a = gel(x,2);
     234     1432809 :       if (mpodd(q)) pari_err_MODULUS("Rg_to_F2", q, gen_2);
     235     1432809 :       return mpodd(a);
     236             :     }
     237           0 :     default: pari_err_TYPE("Rg_to_F2",x);
     238             :       return 0; /* LCOV_EXCL_LINE */
     239             :   }
     240             : }
     241             : 
     242             : GEN
     243     2241479 : RgX_to_Flx(GEN x, ulong p)
     244             : {
     245     2241479 :   long i, lx = lg(x);
     246     2241479 :   GEN a = cgetg(lx, t_VECSMALL);
     247     2241479 :   a[1]=((ulong)x[1])&VARNBITS;
     248    20029051 :   for (i=2; i<lx; i++) a[i] = Rg_to_Fl(gel(x,i), p);
     249     2241479 :   return Flx_renormalize(a,lx);
     250             : }
     251             : 
     252             : GEN
     253           7 : RgXV_to_FlxV(GEN x, ulong p)
     254         175 : { pari_APPLY_type(t_VEC, RgX_to_Flx(gel(x,i), p)) }
     255             : 
     256             : /* If x is a POLMOD, assume modulus is a multiple of T. */
     257             : GEN
     258     3559655 : Rg_to_Flxq(GEN x, GEN T, ulong p)
     259             : {
     260     3559655 :   long ta, tx = typ(x), v = get_Flx_var(T);
     261             :   ulong pi;
     262             :   GEN a, b;
     263     3559654 :   if (is_const_t(tx))
     264             :   {
     265     3308851 :     if (tx == t_FFELT) return FF_to_Flxq(x);
     266     2577843 :     return Fl_to_Flx(Rg_to_Fl(x, p), v);
     267             :   }
     268      250804 :   switch(tx)
     269             :   {
     270        8576 :     case t_POLMOD:
     271        8576 :       b = gel(x,1);
     272        8576 :       a = gel(x,2); ta = typ(a);
     273        8576 :       if (is_const_t(ta)) return Fl_to_Flx(Rg_to_Fl(a, p), v);
     274        8422 :       b = RgX_to_Flx(b, p); if (b[1] != v) break;
     275        8422 :       a = RgX_to_Flx(a, p); if (Flx_equal(b,T)) return a;
     276           0 :       pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
     277           0 :       if (lgpol(Flx_rem_pre(b,T,p,pi))==0) return Flx_rem_pre(a, T, p, pi);
     278           0 :       break;
     279      242228 :     case t_POL:
     280      242228 :       x = RgX_to_Flx(x,p);
     281      242228 :       if (x[1] != v) break;
     282      242228 :       return Flx_rem(x, T, p);
     283           0 :     case t_RFRAC:
     284           0 :       a = Rg_to_Flxq(gel(x,1), T,p);
     285           0 :       b = Rg_to_Flxq(gel(x,2), T,p);
     286           0 :       return Flxq_div(a,b, T,p);
     287             :   }
     288           0 :   pari_err_TYPE("Rg_to_Flxq",x);
     289             :   return NULL; /* LCOV_EXCL_LINE */
     290             : }
     291             : 
     292             : /***********************************************************************/
     293             : /**                   Basic operation on Flx                          **/
     294             : /***********************************************************************/
     295             : /* = zx_renormalize. Similar to normalizepol, in place */
     296             : GEN
     297  2103291274 : Flx_renormalize(GEN /*in place*/ x, long lx)
     298             : {
     299             :   long i;
     300  2352165334 :   for (i = lx-1; i>1; i--)
     301  2257844689 :     if (x[i]) break;
     302  2103291274 :   stackdummy((pari_sp)(x + lg(x)), (pari_sp)(x + i+1));
     303  2101885523 :   setlg(x, i+1); return x;
     304             : }
     305             : 
     306             : GEN
     307     1880796 : Flx_red(GEN z, ulong p)
     308             : {
     309     1880796 :   long i, l = lg(z);
     310     1880796 :   GEN x = cgetg(l, t_VECSMALL);
     311     1880625 :   x[1] = z[1];
     312    33617537 :   for (i=2; i<l; i++) x[i] = uel(z,i)%p;
     313     1880625 :   return Flx_renormalize(x,l);
     314             : }
     315             : 
     316             : int
     317    26927819 : Flx_equal(GEN V, GEN W)
     318             : {
     319    26927819 :   long l = lg(V);
     320    26927819 :   if (lg(W) != l) return 0;
     321    27925953 :   while (--l > 1) /* do not compare variables, V[1] */
     322    26822087 :     if (V[l] != W[l]) return 0;
     323     1103866 :   return 1;
     324             : }
     325             : 
     326             : GEN
     327     2591647 : random_Flx(long d1, long vs, ulong p)
     328             : {
     329     2591647 :   long i, d = d1+2;
     330     2591647 :   GEN y = cgetg(d,t_VECSMALL); y[1] = vs;
     331    17927558 :   for (i=2; i<d; i++) y[i] = random_Fl(p);
     332     2591855 :   return Flx_renormalize(y,d);
     333             : }
     334             : 
     335             : static GEN
     336     7130640 : Flx_addspec(GEN x, GEN y, ulong p, long lx, long ly)
     337             : {
     338             :   long i,lz;
     339             :   GEN z;
     340             : 
     341     7130640 :   if (ly>lx) swapspec(x,y, lx,ly);
     342     7130640 :   lz = lx+2; z = cgetg(lz, t_VECSMALL);
     343   105991136 :   for (i=0; i<ly; i++) z[i+2] = Fl_add(x[i], y[i], p);
     344    89781403 :   for (   ; i<lx; i++) z[i+2] = x[i];
     345     7130640 :   z[1] = 0; return Flx_renormalize(z, lz);
     346             : }
     347             : 
     348             : GEN
     349    62555468 : Flx_add(GEN x, GEN y, ulong p)
     350             : {
     351             :   long i,lz;
     352             :   GEN z;
     353    62555468 :   long lx=lg(x);
     354    62555468 :   long ly=lg(y);
     355    62555468 :   if (ly>lx) swapspec(x,y, lx,ly);
     356    62555468 :   lz = lx; z = cgetg(lz, t_VECSMALL); z[1]=x[1];
     357   575578131 :   for (i=2; i<ly; i++) z[i] = Fl_add(x[i], y[i], p);
     358   128161365 :   for (   ; i<lx; i++) z[i] = x[i];
     359    62534754 :   return Flx_renormalize(z, lz);
     360             : }
     361             : 
     362             : GEN
     363     9916033 : Flx_Fl_add(GEN y, ulong x, ulong p)
     364             : {
     365             :   GEN z;
     366             :   long lz, i;
     367     9916033 :   if (!lgpol(y))
     368      229542 :     return Fl_to_Flx(x,y[1]);
     369     9687487 :   lz=lg(y);
     370     9687487 :   z=cgetg(lz,t_VECSMALL);
     371     9686969 :   z[1]=y[1];
     372     9686969 :   z[2] = Fl_add(y[2],x,p);
     373    46774769 :   for(i=3;i<lz;i++)
     374    37088220 :     z[i] = y[i];
     375     9686549 :   if (lz==3) z = Flx_renormalize(z,lz);
     376     9686322 :   return z;
     377             : }
     378             : 
     379             : static GEN
     380      897860 : Flx_subspec(GEN x, GEN y, ulong p, long lx, long ly)
     381             : {
     382             :   long i,lz;
     383             :   GEN z;
     384             : 
     385      897860 :   if (ly <= lx)
     386             :   {
     387      898006 :     lz = lx+2; z = cgetg(lz, t_VECSMALL);
     388    53978443 :     for (i=0; i<ly; i++) z[i+2] = Fl_sub(x[i],y[i],p);
     389     1448506 :     for (   ; i<lx; i++) z[i+2] = x[i];
     390             :   }
     391             :   else
     392             :   {
     393           0 :     lz = ly+2; z = cgetg(lz, t_VECSMALL);
     394           0 :     for (i=0; i<lx; i++) z[i+2] = Fl_sub(x[i],y[i],p);
     395           0 :     for (   ; i<ly; i++) z[i+2] = Fl_neg(y[i],p);
     396             :   }
     397      897502 :   z[1] = 0; return Flx_renormalize(z, lz);
     398             : }
     399             : 
     400             : GEN
     401   137912299 : Flx_sub(GEN x, GEN y, ulong p)
     402             : {
     403   137912299 :   long i,lz,lx = lg(x), ly = lg(y);
     404             :   GEN z;
     405             : 
     406   137912299 :   if (ly <= lx)
     407             :   {
     408    87882646 :     lz = lx; z = cgetg(lz, t_VECSMALL);
     409   456441731 :     for (i=2; i<ly; i++) z[i] = Fl_sub(x[i],y[i],p);
     410   175735960 :     for (   ; i<lx; i++) z[i] = x[i];
     411             :   }
     412             :   else
     413             :   {
     414    50029653 :     lz = ly; z = cgetg(lz, t_VECSMALL);
     415   262064064 :     for (i=2; i<lx; i++) z[i] = Fl_sub(x[i],y[i],p);
     416   232120870 :     for (   ; i<ly; i++) z[i] = y[i]? (long)(p - y[i]): y[i];
     417             :   }
     418   137902306 :   z[1]=x[1]; return Flx_renormalize(z, lz);
     419             : }
     420             : 
     421             : GEN
     422      151639 : Flx_Fl_sub(GEN y, ulong x, ulong p)
     423             : {
     424             :   GEN z;
     425      151639 :   long lz = lg(y), i;
     426      151639 :   if (lz==2)
     427         513 :     return Fl_to_Flx(Fl_neg(x, p),y[1]);
     428      151126 :   z = cgetg(lz, t_VECSMALL);
     429      151126 :   z[1] = y[1];
     430      151126 :   z[2] = Fl_sub(uel(y,2), x, p);
     431      752409 :   for(i=3; i<lz; i++)
     432      601283 :     z[i] = y[i];
     433      151126 :   if (lz==3) z = Flx_renormalize(z,lz);
     434      151126 :   return z;
     435             : }
     436             : 
     437             : static GEN
     438     3265162 : Flx_negspec(GEN x, ulong p, long l)
     439             : {
     440             :   long i;
     441     3265162 :   GEN z = cgetg(l+2, t_VECSMALL) + 2;
     442    20991381 :   for (i=0; i<l; i++) z[i] = Fl_neg(x[i], p);
     443     3265156 :   return z-2;
     444             : }
     445             : 
     446             : GEN
     447     3265171 : Flx_neg(GEN x, ulong p)
     448             : {
     449     3265171 :   GEN z = Flx_negspec(x+2, p, lgpol(x));
     450     3265286 :   z[1] = x[1];
     451     3265286 :   return z;
     452             : }
     453             : 
     454             : GEN
     455     1747813 : Flx_neg_inplace(GEN x, ulong p)
     456             : {
     457     1747813 :   long i, l = lg(x);
     458    52050330 :   for (i=2; i<l; i++)
     459    50302517 :     if (x[i]) x[i] = p - x[i];
     460     1747813 :   return x;
     461             : }
     462             : 
     463             : GEN
     464     2444871 : Flx_double(GEN y, ulong p)
     465             : {
     466             :   long i, l;
     467     2444871 :   GEN z = cgetg_copy(y, &l); z[1] = y[1];
     468    20334253 :   for(i=2; i<l; i++) z[i] = Fl_double(y[i], p);
     469     2444871 :   return Flx_renormalize(z, l);
     470             : }
     471             : GEN
     472     1049734 : Flx_triple(GEN y, ulong p)
     473             : {
     474             :   long i, l;
     475     1049734 :   GEN z = cgetg_copy(y, &l); z[1] = y[1];
     476     8278253 :   for(i=2; i<l; i++) z[i] = Fl_triple(y[i], p);
     477     1049734 :   return Flx_renormalize(z, l);
     478             : }
     479             : 
     480             : GEN
     481    18241112 : Flx_Fl_mul_pre(GEN y, ulong x, ulong p, ulong pi)
     482             : {
     483             :   GEN z;
     484             :   long i, l;
     485    18241112 :   if (!x) return pol0_Flx(y[1]);
     486    17465372 :   z = cgetg_copy(y, &l); z[1] = y[1];
     487    17465028 :   if (pi==0)
     488             :   {
     489    15271706 :     if (HIGHWORD(x | p))
     490           0 :       for(i=2; i<l; i++) z[i] = Fl_mul(uel(y,i), x, p);
     491             :     else
     492    92114398 :       for(i=2; i<l; i++) z[i] = (uel(y,i) * x) % p;
     493             :   } else
     494    18037705 :       for(i=2; i<l; i++) z[i] = Fl_mul_pre(uel(y,i), x, p, pi);
     495    17465585 :   return Flx_renormalize(z, l);
     496             : }
     497             : 
     498             : GEN
     499     7313375 : Flx_Fl_mul(GEN x, ulong y, ulong p)
     500     7313375 : { return Flx_Fl_mul_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
     501             : 
     502             : GEN
     503           0 : Flx_convol(GEN x, GEN y, ulong p)
     504             : {
     505           0 :   long lx = lg(x), ly = lg(y), i;
     506             :   GEN z;
     507           0 :   if (lx < ly) swapspec(x,y, lx,ly);
     508           0 :   z = cgetg(ly,t_VECSMALL); z[1] = x[1];
     509           0 :   for (i=2; i<ly; i++) uel(z,i) = Fl_mul(uel(x,i),uel(y,i), p);
     510           0 :   return Flx_renormalize(z, ly);
     511             : }
     512             : 
     513             : GEN
     514    11932033 : Flx_Fl_mul_to_monic(GEN y, ulong x, ulong p)
     515             : {
     516             :   GEN z;
     517             :   long i, l;
     518    11932033 :   z = cgetg_copy(y, &l); z[1] = y[1];
     519    11927936 :   if (HIGHWORD(x | p))
     520     5405584 :     for(i=2; i<l-1; i++) z[i] = Fl_mul(y[i], x, p);
     521             :   else
     522    26766720 :     for(i=2; i<l-1; i++) z[i] = (y[i] * x) % p;
     523    11927916 :   z[l-1] = 1; return z;
     524             : }
     525             : 
     526             : /* Return a*x^n if n>=0 and a\x^(-n) if n<0 */
     527             : GEN
     528    26792846 : Flx_shift(GEN a, long n)
     529             : {
     530    26792846 :   long i, l = lg(a);
     531             :   GEN  b;
     532    26792846 :   if (l==2 || !n) return Flx_copy(a);
     533    26449576 :   if (l+n<=2) return pol0_Flx(a[1]);
     534    26235210 :   b = cgetg(l+n, t_VECSMALL);
     535    26232986 :   b[1] = a[1];
     536    26232986 :   if (n < 0)
     537    72558195 :     for (i=2-n; i<l; i++) b[i+n] = a[i];
     538             :   else
     539             :   {
     540    51550615 :     for (i=0; i<n; i++) b[2+i] = 0;
     541   148642955 :     for (i=2; i<l; i++) b[i+n] = a[i];
     542             :   }
     543    26232986 :   return b;
     544             : }
     545             : 
     546             : GEN
     547    62061685 : Flx_normalize(GEN z, ulong p)
     548             : {
     549    62061685 :   long l = lg(z)-1;
     550    62061685 :   ulong p1 = z[l]; /* leading term */
     551    62061685 :   if (p1 == 1) return z;
     552    11910571 :   return Flx_Fl_mul_to_monic(z, Fl_inv(p1,p), p);
     553             : }
     554             : 
     555             : /* return (x * X^d) + y. Assume d > 0, shallow if x == 0*/
     556             : static GEN
     557     3664519 : Flx_addshift(GEN x, GEN y, ulong p, long d)
     558             : {
     559     3664519 :   GEN xd,yd,zd = (GEN)avma;
     560     3664519 :   long a,lz,ny = lgpol(y), nx = lgpol(x);
     561     3664519 :   long vs = x[1];
     562     3664519 :   if (nx == 0) return y;
     563     3662667 :   x += 2; y += 2; a = ny-d;
     564     3662667 :   if (a <= 0)
     565             :   {
     566       85034 :     lz = (a>nx)? ny+2: nx+d+2;
     567       85034 :     (void)new_chunk(lz); xd = x+nx; yd = y+ny;
     568     1728364 :     while (xd > x) *--zd = *--xd;
     569       85034 :     x = zd + a;
     570      163898 :     while (zd > x) *--zd = 0;
     571             :   }
     572             :   else
     573             :   {
     574     3577633 :     xd = new_chunk(d); yd = y+d;
     575     3577633 :     x = Flx_addspec(x,yd,p, nx,a);
     576     3577633 :     lz = (a>nx)? ny+2: lg(x)+d;
     577   132032534 :     x += 2; while (xd > x) *--zd = *--xd;
     578             :   }
     579    60059011 :   while (yd > y) *--zd = *--yd;
     580     3662667 :   *--zd = vs;
     581     3662667 :   *--zd = evaltyp(t_VECSMALL) | evallg(lz); return zd;
     582             : }
     583             : 
     584             : /* shift polynomial + GC; do not set evalvarn*/
     585             : static GEN
     586   623183630 : Flx_shiftip(pari_sp av, GEN x, long v)
     587             : {
     588   623183630 :   long i, lx = lg(x), ly;
     589             :   GEN y;
     590   623183630 :   if (!v || lx==2) return gc_uptoleaf(av, x);
     591   174188738 :   ly = lx + v; /* result length */
     592   174188738 :   (void)new_chunk(ly); /* check that result fits */
     593   174077690 :   x += lx; y = (GEN)av;
     594  1234846160 :   for (i = 2; i<lx; i++) *--y = *--x;
     595   700934259 :   for (i = 0; i< v; i++) *--y = 0;
     596   174077690 :   y -= 2; y[0] = evaltyp(t_VECSMALL) | evallg(ly);
     597   174232546 :   return gc_const((pari_sp)y, y);
     598             : }
     599             : 
     600             : static long
     601  2282480136 : get_Fl_threshold(ulong p, long mul, long mul2)
     602             : {
     603  2282480136 :   return SMALL_ULONG(p) ? mul: mul2;
     604             : }
     605             : 
     606             : #define BITS_IN_QUARTULONG (BITS_IN_HALFULONG >> 1)
     607             : #define QUARTMASK ((1UL<<BITS_IN_QUARTULONG)-1UL)
     608             : #define LLQUARTWORD(x) ((x) & QUARTMASK)
     609             : #define HLQUARTWORD(x) (((x) >> BITS_IN_QUARTULONG) & QUARTMASK)
     610             : #define LHQUARTWORD(x) (((x) >> (2*BITS_IN_QUARTULONG)) & QUARTMASK)
     611             : #define HHQUARTWORD(x) (((x) >> (3*BITS_IN_QUARTULONG)) & QUARTMASK)
     612             : INLINE long
     613     8328572 : maxbitcoeffpol(ulong p, long n)
     614             : {
     615     8328572 :   GEN z = muliu(sqru(p - 1), n);
     616     8325342 :   long b = expi(z) + 1;
     617             :   /* only do expensive bit-packing if it saves at least 1 limb */
     618     8326099 :   if (b <= BITS_IN_QUARTULONG)
     619             :   {
     620      875204 :     if (nbits2nlong(n*b) == (n + 3)>>2)
     621      107383 :       b = BITS_IN_QUARTULONG;
     622             :   }
     623     7450895 :   else if (b <= BITS_IN_HALFULONG)
     624             :   {
     625     1552916 :     if (nbits2nlong(n*b) == (n + 1)>>1)
     626        5589 :       b = BITS_IN_HALFULONG;
     627             :   }
     628             :   else
     629             :   {
     630     5897979 :     long l = lgefint(z) - 2;
     631     5897979 :     if (nbits2nlong(n*b) == n*l)
     632      307247 :       b = l*BITS_IN_LONG;
     633             :   }
     634     8325846 :   return b;
     635             : }
     636             : 
     637             : INLINE ulong
     638  3347606118 : Flx_mullimb_ok(GEN x, GEN y, ulong p, long a, long b)
     639             : { /* Assume OK_ULONG*/
     640  3347606118 :   ulong p1 = 0;
     641             :   long i;
     642 15879015452 :   for (i=a; i<b; i++)
     643 12531409334 :     if (y[i])
     644             :     {
     645 10530157421 :       p1 += y[i] * x[-i];
     646 10530157421 :       if (p1 & HIGHBIT) p1 %= p;
     647             :     }
     648  3347606118 :   return p1 % p;
     649             : }
     650             : 
     651             : INLINE ulong
     652  1164207026 : Flx_mullimb(GEN x, GEN y, ulong p, ulong pi, long a, long b)
     653             : {
     654  1164207026 :   ulong p1 = 0;
     655             :   long i;
     656  3692902955 :   for (i=a; i<b; i++)
     657  2528759559 :     if (y[i])
     658  2489203836 :       p1 = Fl_addmul_pre(p1, y[i], x[-i], p, pi);
     659  1164143396 :   return p1;
     660             : }
     661             : 
     662             : /* assume nx >= ny > 0 */
     663             : static GEN
     664   337404197 : Flx_mulspec_basecase(GEN x, GEN y, ulong p, ulong pi, long nx, long ny)
     665             : {
     666             :   long i,lz,nz;
     667             :   GEN z;
     668             : 
     669   337404197 :   lz = nx+ny+1; nz = lz-2;
     670   337404197 :   z = cgetg(lz, t_VECSMALL) + 2; /* x:y:z [i] = term of degree i */
     671   337163533 :   if (!pi)
     672             :   {
     673  1127710525 :     for (i=0; i<ny; i++)z[i] = Flx_mullimb_ok(x+i,y,p,0,i+1);
     674   727144798 :     for (  ; i<nx; i++) z[i] = Flx_mullimb_ok(x+i,y,p,0,ny);
     675   878005114 :     for (  ; i<nz; i++) z[i] = Flx_mullimb_ok(x+i,y,p,i-nx+1,ny);
     676             :   }
     677             :   else
     678             :   {
     679   307621358 :     for (i=0; i<ny; i++)z[i] = Flx_mullimb(x+i,y,p,pi,0,i+1);
     680   211300969 :     for (  ; i<nx; i++) z[i] = Flx_mullimb(x+i,y,p,pi,0,ny);
     681   221691937 :     for (  ; i<nz; i++) z[i] = Flx_mullimb(x+i,y,p,pi,i-nx+1,ny);
     682             :   }
     683   337146495 :   z -= 2; return Flx_renormalize(z, lz);
     684             : }
     685             : 
     686             : static GEN
     687       12409 : int_to_Flx(GEN z, ulong p)
     688             : {
     689       12409 :   long i, l = lgefint(z);
     690       12409 :   GEN x = cgetg(l, t_VECSMALL);
     691     1067879 :   for (i=2; i<l; i++) x[i] = uel(z,i)%p;
     692       12406 :   return Flx_renormalize(x, l);
     693             : }
     694             : 
     695             : INLINE GEN
     696       10144 : Flx_mulspec_mulii(GEN a, GEN b, ulong p, long na, long nb)
     697             : {
     698       10144 :   GEN z=muliispec(a,b,na,nb);
     699       10145 :   return int_to_Flx(z,p);
     700             : }
     701             : 
     702             : static GEN
     703      468571 : Flx_to_int_halfspec(GEN a, long na)
     704             : {
     705             :   long j;
     706      468571 :   long n = (na+1)>>1UL;
     707      468571 :   GEN V = cgetipos(2+n);
     708             :   GEN w;
     709     1376826 :   for (w = int_LSW(V), j=0; j+1<na; j+=2, w=int_nextW(w))
     710      908255 :     *w = a[j]|(a[j+1]<<BITS_IN_HALFULONG);
     711      468571 :   if (j<na)
     712      319622 :     *w = a[j];
     713      468571 :   return V;
     714             : }
     715             : 
     716             : static GEN
     717      507048 : int_to_Flx_half(GEN z, ulong p)
     718             : {
     719             :   long i;
     720      507048 :   long lx = (lgefint(z)-2)*2+2;
     721      507048 :   GEN w, x = cgetg(lx, t_VECSMALL);
     722     1910719 :   for (w = int_LSW(z), i=2; i<lx; i+=2, w=int_nextW(w))
     723             :   {
     724     1403671 :     x[i]   = LOWWORD((ulong)*w)%p;
     725     1403671 :     x[i+1] = HIGHWORD((ulong)*w)%p;
     726             :   }
     727      507048 :   return Flx_renormalize(x, lx);
     728             : }
     729             : 
     730             : static GEN
     731        5454 : Flx_mulspec_halfmulii(GEN a, GEN b, ulong p, long na, long nb)
     732             : {
     733        5454 :   GEN A = Flx_to_int_halfspec(a,na);
     734        5454 :   GEN B = Flx_to_int_halfspec(b,nb);
     735        5454 :   GEN z = mulii(A,B);
     736        5454 :   return int_to_Flx_half(z,p);
     737             : }
     738             : 
     739             : static GEN
     740      204550 : Flx_to_int_quartspec(GEN a, long na)
     741             : {
     742             :   long j;
     743      204550 :   long n = (na+3)>>2UL;
     744      204550 :   GEN V = cgetipos(2+n);
     745             :   GEN w;
     746     4378071 :   for (w = int_LSW(V), j=0; j+3<na; j+=4, w=int_nextW(w))
     747     4173520 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG)|(a[j+2]<<(2*BITS_IN_QUARTULONG))|(a[j+3]<<(3*BITS_IN_QUARTULONG));
     748      204551 :   switch (na-j)
     749             :   {
     750      116242 :   case 3:
     751      116242 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG)|(a[j+2]<<(2*BITS_IN_QUARTULONG));
     752      116242 :     break;
     753       34471 :   case 2:
     754       34471 :     *w = a[j]|(a[j+1]<<BITS_IN_QUARTULONG);
     755       34471 :     break;
     756       27346 :   case 1:
     757       27346 :     *w = a[j];
     758       27346 :     break;
     759       26492 :   case 0:
     760       26492 :     break;
     761             :   }
     762      204551 :   return V;
     763             : }
     764             : 
     765             : static GEN
     766      107385 : int_to_Flx_quart(GEN z, ulong p)
     767             : {
     768             :   long i;
     769      107385 :   long lx = (lgefint(z)-2)*4+2;
     770      107385 :   GEN w, x = cgetg(lx, t_VECSMALL);
     771     4874018 :   for (w = int_LSW(z), i=2; i<lx; i+=4, w=int_nextW(w))
     772             :   {
     773     4766633 :     x[i]   = LLQUARTWORD((ulong)*w)%p;
     774     4766633 :     x[i+1] = HLQUARTWORD((ulong)*w)%p;
     775     4766633 :     x[i+2] = LHQUARTWORD((ulong)*w)%p;
     776     4766633 :     x[i+3] = HHQUARTWORD((ulong)*w)%p;
     777             :   }
     778      107385 :   return Flx_renormalize(x, lx);
     779             : }
     780             : 
     781             : static GEN
     782       97165 : Flx_mulspec_quartmulii(GEN a, GEN b, ulong p, long na, long nb)
     783             : {
     784       97165 :   GEN A = Flx_to_int_quartspec(a,na);
     785       97167 :   GEN B = Flx_to_int_quartspec(b,nb);
     786       97167 :   GEN z = mulii(A,B);
     787       97167 :   return int_to_Flx_quart(z,p);
     788             : }
     789             : 
     790             : /*Eval x in 2^(k*BIL) in linear time, k==2 or 3*/
     791             : static GEN
     792      581569 : Flx_eval2BILspec(GEN x, long k, long l)
     793             : {
     794      581569 :   long i, lz = k*l, ki;
     795      581569 :   GEN pz = cgetipos(2+lz);
     796    16322337 :   for (i=0; i < lz; i++)
     797    15740768 :     *int_W(pz,i) = 0UL;
     798     8451953 :   for (i=0, ki=0; i<l; i++, ki+=k)
     799     7870384 :     *int_W(pz,ki) = x[i];
     800      581569 :   return int_normalize(pz,0);
     801             : }
     802             : 
     803             : static GEN
     804      297769 : Z_mod2BIL_Flx_2(GEN x, long d, ulong p)
     805             : {
     806      297769 :   long i, offset, lm = lgefint(x)-2, l = d+3;
     807      297769 :   ulong pi = get_Fl_red(p);
     808      297769 :   GEN pol = cgetg(l, t_VECSMALL);
     809      297769 :   pol[1] = 0;
     810     7987005 :   for (i=0, offset=0; offset+1 < lm; i++, offset += 2)
     811     7689236 :     pol[i+2] = remll_pre(*int_W(x,offset+1), *int_W(x,offset), p, pi);
     812      297769 :   if (offset < lm)
     813      224913 :     pol[i+2] = (*int_W(x,offset)) % p;
     814      297769 :   return Flx_renormalize(pol,l);
     815             : }
     816             : 
     817             : static GEN
     818           0 : Z_mod2BIL_Flx_3(GEN x, long d, ulong p)
     819             : {
     820           0 :   long i, offset, lm = lgefint(x)-2, l = d+3;
     821           0 :   ulong pi = get_Fl_red(p);
     822           0 :   GEN pol = cgetg(l, t_VECSMALL);
     823           0 :   pol[1] = 0;
     824           0 :   for (i=0, offset=0; offset+2 < lm; i++, offset += 3)
     825           0 :     pol[i+2] = remlll_pre(*int_W(x,offset+2), *int_W(x,offset+1),
     826           0 :                           *int_W(x,offset), p, pi);
     827           0 :   if (offset+1 < lm)
     828           0 :     pol[i+2] = remll_pre(*int_W(x,offset+1), *int_W(x,offset), p, pi);
     829           0 :   else if (offset < lm)
     830           0 :     pol[i+2] = (*int_W(x,offset)) % p;
     831           0 :   return Flx_renormalize(pol,l);
     832             : }
     833             : 
     834             : static GEN
     835      294839 : Z_mod2BIL_Flx(GEN x, long bs, long d, ulong p)
     836             : {
     837      294839 :   return bs==2 ? Z_mod2BIL_Flx_2(x, d, p): Z_mod2BIL_Flx_3(x, d, p);
     838             : }
     839             : 
     840             : static GEN
     841      283341 : Flx_mulspec_mulii_inflate(GEN x, GEN y, long N, ulong p, long nx, long ny)
     842             : {
     843      283341 :   pari_sp av = avma;
     844      283341 :   GEN z = mulii(Flx_eval2BILspec(x,N,nx), Flx_eval2BILspec(y,N,ny));
     845      283341 :   return gc_upto(av, Z_mod2BIL_Flx(z, N, nx+ny-2, p));
     846             : }
     847             : 
     848             : static GEN
     849    20720532 : kron_pack_Flx_spec_bits(GEN x, long b, long l) {
     850             :   GEN y;
     851             :   long i;
     852    20720532 :   if (l == 0)
     853     3429494 :     return gen_0;
     854    17291038 :   y = cgetg(l + 1, t_VECSMALL);
     855   815762374 :   for(i = 1; i <= l; i++)
     856   798477574 :     y[i] = x[l - i];
     857    17284800 :   return nv_fromdigits_2k(y, b);
     858             : }
     859             : 
     860             : /* assume b < BITS_IN_LONG */
     861             : static GEN
     862     5655901 : kron_unpack_Flx_bits_narrow(GEN z, long b, ulong p) {
     863     5655901 :   GEN v = binary_2k_nv(z, b), x;
     864     5655957 :   long i, l = lg(v) + 1;
     865     5655957 :   x = cgetg(l, t_VECSMALL);
     866   624590208 :   for (i = 2; i < l; i++)
     867   618934143 :     x[i] = v[l - i] % p;
     868     5656065 :   return Flx_renormalize(x, l);
     869             : }
     870             : 
     871             : static GEN
     872     5531463 : kron_unpack_Flx_bits_wide(GEN z, long b, ulong p, ulong pi) {
     873     5531463 :   GEN v = binary_2k(z, b), x, y;
     874     5531599 :   long i, l = lg(v) + 1, ly;
     875     5531599 :   x = cgetg(l, t_VECSMALL);
     876   232465379 :   for (i = 2; i < l; i++) {
     877   226935736 :     y = gel(v, l - i);
     878   226935736 :     ly = lgefint(y);
     879   226935736 :     switch (ly) {
     880     6275704 :     case 2: x[i] = 0; break;
     881    29336726 :     case 3: x[i] = *int_W_lg(y, 0, ly) % p; break;
     882   175417042 :     case 4: x[i] = remll_pre(*int_W_lg(y, 1, ly), *int_W_lg(y, 0, ly), p, pi); break;
     883    31812359 :     case 5: x[i] = remlll_pre(*int_W_lg(y, 2, ly), *int_W_lg(y, 1, ly),
     884    15906264 :                               *int_W_lg(y, 0, ly), p, pi); break;
     885           0 :     default: x[i] = umodiu(gel(v, l - i), p);
     886             :     }
     887             :   }
     888     5529643 :   return Flx_renormalize(x, l);
     889             : }
     890             : 
     891             : static GEN
     892     7221864 : Flx_mulspec_Kronecker(GEN A, GEN B, long b, ulong p, long lA, long lB)
     893             : {
     894             :   GEN C, D;
     895     7221864 :   pari_sp av = avma;
     896     7221864 :   A =  kron_pack_Flx_spec_bits(A, b, lA);
     897     7228701 :   B =  kron_pack_Flx_spec_bits(B, b, lB);
     898     7228796 :   C = gc_INT(av, mulii(A, B));
     899     7227470 :   if (b < BITS_IN_LONG)
     900     2069552 :     D =  kron_unpack_Flx_bits_narrow(C, b, p);
     901             :   else
     902             :   {
     903     5157918 :     ulong pi = get_Fl_red(p);
     904     5156637 :     D = kron_unpack_Flx_bits_wide(C, b, p, pi);
     905             :   }
     906     7224621 :   return D;
     907             : }
     908             : 
     909             : static GEN
     910      682782 : Flx_sqrspec_Kronecker(GEN A, long b, ulong p, long lA)
     911             : {
     912             :   GEN C, D;
     913      682782 :   A =  kron_pack_Flx_spec_bits(A, b, lA);
     914      682847 :   C = sqri(A);
     915      682856 :   if (b < BITS_IN_LONG)
     916      474897 :     D =  kron_unpack_Flx_bits_narrow(C, b, p);
     917             :   else
     918             :   {
     919      207959 :     ulong pi = get_Fl_red(p);
     920      207957 :     D = kron_unpack_Flx_bits_wide(C, b, p, pi);
     921             :   }
     922      682829 :   return D;
     923             : }
     924             : 
     925             : /* fast product (Karatsuba) of polynomials a,b. These are not real GENs, a+2,
     926             :  * b+2 were sent instead. na, nb = number of terms of a, b.
     927             :  * Only c, c0, c1, c2 are genuine GEN.
     928             :  */
     929             : static GEN
     930   374655273 : Flx_mulspec(GEN a, GEN b, ulong p, ulong pi, long na, long nb)
     931             : {
     932             :   GEN a0,c,c0;
     933   374655273 :   long n0, n0a, i, v = 0;
     934             :   pari_sp av;
     935             : 
     936   478879089 :   while (na && !a[0]) { a++; na--; v++; }
     937   559332383 :   while (nb && !b[0]) { b++; nb--; v++; }
     938   374655273 :   if (na < nb) swapspec(a,b, na,nb);
     939   374655273 :   if (!nb) return pol0_Flx(0);
     940             : 
     941   346555810 :   av = avma;
     942   346555810 :   if (nb >= get_Fl_threshold(p, Flx_MUL_MULII_LIMIT, Flx_MUL2_MULII_LIMIT))
     943             :   {
     944     7621933 :     long m = maxbitcoeffpol(p,nb);
     945     7617587 :     switch (m)
     946             :     {
     947       97165 :     case BITS_IN_QUARTULONG:
     948       97165 :       return Flx_shiftip(av,Flx_mulspec_quartmulii(a,b,p,na,nb), v);
     949        5454 :     case BITS_IN_HALFULONG:
     950        5454 :       return Flx_shiftip(av,Flx_mulspec_halfmulii(a,b,p,na,nb), v);
     951       10144 :     case BITS_IN_LONG:
     952       10144 :       return Flx_shiftip(av,Flx_mulspec_mulii(a,b,p,na,nb), v);
     953      283341 :     case 2*BITS_IN_LONG:
     954      283341 :       return Flx_shiftip(av,Flx_mulspec_mulii_inflate(a,b,2,p,na,nb), v);
     955           0 :     case 3*BITS_IN_LONG:
     956           0 :       return Flx_shiftip(av,Flx_mulspec_mulii_inflate(a,b,3,p,na,nb), v);
     957     7221483 :     default:
     958     7221483 :       return Flx_shiftip(av,Flx_mulspec_Kronecker(a,b,m,p,na,nb), v);
     959             :     }
     960             :   }
     961   339120844 :   if (nb < get_Fl_threshold(p, Flx_MUL_KARATSUBA_LIMIT, Flx_MUL2_KARATSUBA_LIMIT))
     962   337347075 :     return Flx_shiftip(av,Flx_mulspec_basecase(a,b,p,pi,na,nb), v);
     963     1801925 :   i=(na>>1); n0=na-i; na=i;
     964     1801925 :   a0=a+n0; n0a=n0;
     965     2569544 :   while (n0a && !a[n0a-1]) n0a--;
     966             : 
     967     1801925 :   if (nb > n0)
     968             :   {
     969             :     GEN b0,c1,c2;
     970             :     long n0b;
     971             : 
     972     1747813 :     nb -= n0; b0 = b+n0; n0b = n0;
     973     2827499 :     while (n0b && !b[n0b-1]) n0b--;
     974     1747813 :     c =  Flx_mulspec(a,b,p,pi,n0a,n0b);
     975     1747813 :     c0 = Flx_mulspec(a0,b0,p,pi,na,nb);
     976             : 
     977     1747813 :     c2 = Flx_addspec(a0,a,p,na,n0a);
     978     1747813 :     c1 = Flx_addspec(b0,b,p,nb,n0b);
     979             : 
     980     1747813 :     c1 = Flx_mul_pre(c1,c2,p,pi);
     981     1747813 :     c2 = Flx_add(c0,c,p);
     982             : 
     983     1747813 :     c2 = Flx_neg_inplace(c2,p);
     984     1747813 :     c2 = Flx_add(c1,c2,p);
     985     1747813 :     c0 = Flx_addshift(c0,c2 ,p, n0);
     986             :   }
     987             :   else
     988             :   {
     989       54112 :     c  = Flx_mulspec(a,b,p,pi,n0a,nb);
     990       54112 :     c0 = Flx_mulspec(a0,b,p,pi,na,nb);
     991             :   }
     992     1801925 :   c0 = Flx_addshift(c0,c,p,n0);
     993     1801925 :   return Flx_shiftip(av,c0, v);
     994             : }
     995             : 
     996             : GEN
     997   368999639 : Flx_mul_pre(GEN x, GEN y, ulong p, ulong pi)
     998             : {
     999   368999639 :   GEN z = Flx_mulspec(x+2,y+2,p, pi, lgpol(x),lgpol(y));
    1000   369132250 :   z[1] = x[1]; return z;
    1001             : }
    1002             : GEN
    1003    27632061 : Flx_mul(GEN x, GEN y, ulong p)
    1004    27632061 : { return Flx_mul_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1005             : 
    1006             : static GEN
    1007   277193028 : Flx_sqrspec_basecase(GEN x, ulong p, ulong pi, long nx)
    1008             : {
    1009             :   long i, lz, nz;
    1010             :   ulong p1;
    1011             :   GEN z;
    1012             : 
    1013   277193028 :   if (!nx) return pol0_Flx(0);
    1014   277193028 :   lz = (nx << 1) + 1, nz = lz-2;
    1015   277193028 :   z = cgetg(lz, t_VECSMALL) + 2;
    1016   276505109 :   if (!pi)
    1017             :   {
    1018   212472082 :     z[0] = x[0]*x[0]%p;
    1019   908153522 :     for (i=1; i<nx; i++)
    1020             :     {
    1021   695813327 :       p1 = Flx_mullimb_ok(x+i,x,p,0, (i+1)>>1);
    1022   695681440 :       p1 <<= 1;
    1023   695681440 :       if ((i&1) == 0) p1 += x[i>>1] * x[i>>1];
    1024   695681440 :       z[i] = p1 % p;
    1025             :     }
    1026   912701788 :     for (  ; i<nz; i++)
    1027             :     {
    1028   699680224 :       p1 = Flx_mullimb_ok(x+i,x,p,i-nx+1, (i+1)>>1);
    1029   700361593 :       p1 <<= 1;
    1030   700361593 :       if ((i&1) == 0) p1 += x[i>>1] * x[i>>1];
    1031   700361593 :       z[i] = p1 % p;
    1032             :     }
    1033             :   }
    1034             :   else
    1035             :   {
    1036    64033027 :     z[0] = Fl_sqr_pre(x[0], p, pi);
    1037   411230995 :     for (i=1; i<nx; i++)
    1038             :     {
    1039   347152799 :       p1 = Flx_mullimb(x+i,x,p,pi,0, (i+1)>>1);
    1040   347338754 :       p1 = Fl_add(p1, p1, p);
    1041   346861910 :       if ((i&1) == 0) p1 = Fl_add(p1, Fl_sqr_pre(x[i>>1], p, pi), p);
    1042   347051462 :       z[i] = p1;
    1043             :     }
    1044   411392624 :     for (  ; i<nz; i++)
    1045             :     {
    1046   347228191 :       p1 = Flx_mullimb(x+i,x,p,pi,i-nx+1, (i+1)>>1);
    1047   347785526 :       p1 = Fl_add(p1, p1, p);
    1048   347376597 :       if ((i&1) == 0) p1 = Fl_add(p1, Fl_sqr_pre(x[i>>1], p, pi), p);
    1049   347314428 :       z[i] = p1;
    1050             :     }
    1051             :   }
    1052   277185997 :   z -= 2; return Flx_renormalize(z, lz);
    1053             : }
    1054             : 
    1055             : static GEN
    1056        2263 : Flx_sqrspec_sqri(GEN a, ulong p, long na)
    1057             : {
    1058        2263 :   GEN z=sqrispec(a,na);
    1059        2264 :   return int_to_Flx(z,p);
    1060             : }
    1061             : 
    1062             : static GEN
    1063         135 : Flx_sqrspec_halfsqri(GEN a, ulong p, long na)
    1064             : {
    1065         135 :   GEN z = sqri(Flx_to_int_halfspec(a,na));
    1066         135 :   return int_to_Flx_half(z,p);
    1067             : }
    1068             : 
    1069             : static GEN
    1070       10218 : Flx_sqrspec_quartsqri(GEN a, ulong p, long na)
    1071             : {
    1072       10218 :   GEN z = sqri(Flx_to_int_quartspec(a,na));
    1073       10218 :   return int_to_Flx_quart(z,p);
    1074             : }
    1075             : 
    1076             : static GEN
    1077       11498 : Flx_sqrspec_sqri_inflate(GEN x, long N, ulong p, long nx)
    1078             : {
    1079       11498 :   pari_sp av = avma;
    1080       11498 :   GEN  z = sqri(Flx_eval2BILspec(x,N,nx));
    1081       11498 :   return gc_upto(av, Z_mod2BIL_Flx(z, N, (nx-1)*2, p));
    1082             : }
    1083             : 
    1084             : static GEN
    1085   277343248 : Flx_sqrspec(GEN a, ulong p, ulong pi, long na)
    1086             : {
    1087             :   GEN a0, c, c0;
    1088   277343248 :   long n0, n0a, i, v = 0, m;
    1089             :   pari_sp av;
    1090             : 
    1091   398220787 :   while (na && !a[0]) { a++; na--; v += 2; }
    1092   277343248 :   if (!na) return pol0_Flx(0);
    1093             : 
    1094   277098707 :   av = avma;
    1095   277098707 :   if (na >= get_Fl_threshold(p, Flx_SQR_SQRI_LIMIT, Flx_SQR2_SQRI_LIMIT))
    1096             :   {
    1097      706862 :     m = maxbitcoeffpol(p,na);
    1098      706891 :     switch(m)
    1099             :     {
    1100       10218 :     case BITS_IN_QUARTULONG:
    1101       10218 :       return Flx_shiftip(av, Flx_sqrspec_quartsqri(a,p,na), v);
    1102         135 :     case BITS_IN_HALFULONG:
    1103         135 :       return Flx_shiftip(av, Flx_sqrspec_halfsqri(a,p,na), v);
    1104        2263 :     case BITS_IN_LONG:
    1105        2263 :       return Flx_shiftip(av, Flx_sqrspec_sqri(a,p,na), v);
    1106       11498 :     case 2*BITS_IN_LONG:
    1107       11498 :       return Flx_shiftip(av, Flx_sqrspec_sqri_inflate(a,2,p,na), v);
    1108           0 :     case 3*BITS_IN_LONG:
    1109           0 :       return Flx_shiftip(av, Flx_sqrspec_sqri_inflate(a,3,p,na), v);
    1110      682777 :     default:
    1111      682777 :       return Flx_shiftip(av, Flx_sqrspec_Kronecker(a,m,p,na), v);
    1112             :     }
    1113             :   }
    1114   276862929 :   if (na < get_Fl_threshold(p, Flx_SQR_KARATSUBA_LIMIT, Flx_SQR2_KARATSUBA_LIMIT))
    1115   276823649 :     return Flx_shiftip(av, Flx_sqrspec_basecase(a,p,pi,na), v);
    1116       57400 :   i=(na>>1); n0=na-i; na=i;
    1117       57400 :   a0=a+n0; n0a=n0;
    1118       72142 :   while (n0a && !a[n0a-1]) n0a--;
    1119             : 
    1120       57400 :   c = Flx_sqrspec(a,p,pi,n0a);
    1121       57400 :   c0= Flx_sqrspec(a0,p,pi,na);
    1122       57400 :   if (p == 2) n0 *= 2;
    1123             :   else
    1124             :   {
    1125       57381 :     GEN c1, t = Flx_addspec(a0,a,p,na,n0a);
    1126       57381 :     t = Flx_sqr_pre(t,p,pi);
    1127       57381 :     c1= Flx_add(c0,c, p);
    1128       57381 :     c1= Flx_sub(t, c1, p);
    1129       57381 :     c0 = Flx_addshift(c0,c1,p,n0);
    1130             :   }
    1131       57400 :   c0 = Flx_addshift(c0,c,p,n0);
    1132       57400 :   return Flx_shiftip(av,c0,v);
    1133             : }
    1134             : 
    1135             : GEN
    1136   277048942 : Flx_sqr_pre(GEN x, ulong p, ulong pi)
    1137             : {
    1138   277048942 :   GEN z = Flx_sqrspec(x+2,p, pi, lgpol(x));
    1139   278302839 :   z[1] = x[1]; return z;
    1140             : }
    1141             : GEN
    1142      354647 : Flx_sqr(GEN x, ulong p)
    1143      354647 : { return Flx_sqr_pre(x, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1144             : 
    1145             : GEN
    1146        7921 : Flx_powu_pre(GEN x, ulong n, ulong p, ulong pi)
    1147             : {
    1148        7921 :   GEN y = pol1_Flx(x[1]), z;
    1149             :   ulong m;
    1150        7917 :   if (n == 0) return y;
    1151        7917 :   m = n; z = x;
    1152             :   for (;;)
    1153             :   {
    1154       30541 :     if (m&1UL) y = Flx_mul_pre(y,z, p, pi);
    1155       30538 :     m >>= 1; if (!m) return y;
    1156       22621 :     z = Flx_sqr_pre(z, p, pi);
    1157             :   }
    1158             : }
    1159             : GEN
    1160           0 : Flx_powu(GEN x, ulong n, ulong p)
    1161             : {
    1162           0 :   if (n == 0) return pol1_Flx(x[1]);
    1163           0 :   return Flx_powu_pre(x, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p));
    1164             : }
    1165             : 
    1166             : GEN
    1167       14082 : Flx_halve(GEN y, ulong p)
    1168             : {
    1169             :   GEN z;
    1170             :   long i, l;
    1171       14082 :   z = cgetg_copy(y, &l); z[1] = y[1];
    1172       58679 :   for(i=2; i<l; i++) uel(z,i) = Fl_halve(uel(y,i), p);
    1173       14082 :   return z;
    1174             : }
    1175             : 
    1176             : static GEN
    1177     7124703 : Flx_recipspec(GEN x, long l, long n)
    1178             : {
    1179             :   long i;
    1180     7124703 :   GEN z=cgetg(n+2,t_VECSMALL)+2;
    1181   115834311 :   for(i=0; i<l; i++)
    1182   108710770 :     z[n-i-1] = x[i];
    1183    15596122 :   for(   ; i<n; i++)
    1184     8472581 :     z[n-i-1] = 0;
    1185     7123541 :   return Flx_renormalize(z-2,n+2);
    1186             : }
    1187             : 
    1188             : GEN
    1189           0 : Flx_recip(GEN x)
    1190             : {
    1191           0 :   GEN z=Flx_recipspec(x+2,lgpol(x),lgpol(x));
    1192           0 :   z[1]=x[1];
    1193           0 :   return z;
    1194             : }
    1195             : 
    1196             : /* Return P(x * h) */
    1197             : GEN
    1198           0 : Flx_unscale(GEN P, ulong h, ulong p)
    1199             : {
    1200             :   long i, l;
    1201           0 :   ulong hi = 1UL;
    1202           0 :   GEN Q = cgetg_copy(P, &l);
    1203           0 :   Q[1] = P[1];
    1204           0 :   if (l == 2) return Q;
    1205           0 :   uel(Q,2) = uel(P,2);
    1206           0 :   for (i=3; i<l; i++)
    1207             :   {
    1208           0 :     hi = Fl_mul(hi, h ,p);
    1209           0 :     uel(Q,i) = Fl_mul(uel(P,i), hi, p);
    1210             :   }
    1211           0 :   return Q;
    1212             : }
    1213             : /* Return h^degpol(P) P(x / h) */
    1214             : GEN
    1215        1117 : Flx_rescale(GEN P, ulong h, ulong p)
    1216             : {
    1217        1117 :   long i, l = lg(P);
    1218        1117 :   GEN Q = cgetg(l,t_VECSMALL);
    1219        1117 :   ulong hi = h;
    1220        1117 :   Q[l-1] = P[l-1];
    1221       12538 :   for (i=l-2; i>=2; i--)
    1222             :   {
    1223       12538 :     Q[i] = Fl_mul(P[i], hi, p);
    1224       12538 :     if (i == 2) break;
    1225       11421 :     hi = Fl_mul(hi,h, p);
    1226             :   }
    1227        1117 :   Q[1] = P[1]; return Q;
    1228             : }
    1229             : 
    1230             : /* x/polrecip(P)+O(x^n); allow pi = 0 */
    1231             : static GEN
    1232      134256 : Flx_invBarrett_basecase(GEN T, ulong p, ulong pi)
    1233             : {
    1234      134256 :   long i, l=lg(T)-1, lr=l-1, k;
    1235      134256 :   GEN r=cgetg(lr,t_VECSMALL); r[1] = T[1];
    1236      134256 :   r[2] = 1;
    1237      134256 :   if (!pi)
    1238      767179 :     for (i=3;i<lr;i++)
    1239             :     {
    1240      760160 :       ulong u = uel(T, l-i+2);
    1241    45641991 :       for (k=3; k<i; k++)
    1242    44881831 :         { u += uel(T,l-i+k) * uel(r, k); if (u & HIGHBIT) u %= p; }
    1243      760160 :       r[i] = Fl_neg(u % p, p);
    1244             :     }
    1245             :   else
    1246     2109675 :     for (i=3;i<lr;i++)
    1247             :     {
    1248     1982441 :       ulong u = Fl_neg(uel(T,l-i+2), p);
    1249    59522505 :       for (k=3; k<i; k++)
    1250             :       {
    1251    57540067 :         ulong t = Fl_neg(uel(T,l-i+k), p);
    1252    57540067 :         u = Fl_addmul_pre(u, t, uel(r,k), p, pi);
    1253             :       }
    1254     1982438 :       r[i] = u;
    1255             :     }
    1256      134253 :   return Flx_renormalize(r,lr);
    1257             : }
    1258             : 
    1259             : /* Return new lgpol */
    1260             : static long
    1261     2133012 : Flx_lgrenormalizespec(GEN x, long lx)
    1262             : {
    1263             :   long i;
    1264     7478724 :   for (i = lx-1; i>=0; i--)
    1265     7477892 :     if (x[i]) break;
    1266     2133012 :   return i+1;
    1267             : }
    1268             : /* allow pi = 0 */
    1269             : static GEN
    1270       23160 : Flx_invBarrett_Newton(GEN T, ulong p, ulong pi)
    1271             : {
    1272       23160 :   long nold, lx, lz, lq, l = degpol(T), lQ;
    1273       23160 :   GEN q, y, z, x = zero_zv(l+1) + 2;
    1274       23161 :   ulong mask = quadratic_prec_mask(l-2); /* assume l > 2 */
    1275             :   pari_sp av;
    1276             : 
    1277       23161 :   y = T+2;
    1278       23161 :   q = Flx_recipspec(y,l+1,l+1); lQ = lgpol(q); q+=2;
    1279       23161 :   av = avma;
    1280             :   /* We work on _spec_ Flx's, all the l[xzq12] below are lgpol's */
    1281             : 
    1282             :   /* initialize */
    1283       23161 :   x[0] = Fl_inv(q[0], p);
    1284       23161 :   if (lQ>1 && q[1])
    1285        5109 :   {
    1286        5109 :     ulong u = q[1];
    1287        5109 :     if (x[0] != 1) u = Fl_mul(u, Fl_sqr(x[0],p), p);
    1288        5109 :     x[1] = p - u; lx = 2;
    1289             :   }
    1290             :   else
    1291       18052 :     lx = 1;
    1292       23161 :   nold = 1;
    1293      159194 :   for (; mask > 1; set_avma(av))
    1294             :   { /* set x -= x(x*q - 1) + O(t^(nnew + 1)), knowing x*q = 1 + O(t^(nold+1)) */
    1295      136041 :     long i, lnew, nnew = nold << 1;
    1296             : 
    1297      136041 :     if (mask & 1) nnew--;
    1298      136041 :     mask >>= 1;
    1299             : 
    1300      136041 :     lnew = nnew + 1;
    1301      136041 :     lq = Flx_lgrenormalizespec(q, minss(lQ, lnew));
    1302      136047 :     z = Flx_mulspec(x, q, p, pi, lx, lq); /* FIXME: high product */
    1303      136038 :     lz = lgpol(z); if (lz > lnew) lz = lnew;
    1304      136034 :     z += 2;
    1305             :     /* subtract 1 [=>first nold words are 0]: renormalize so that z(0) != 0 */
    1306      298851 :     for (i = nold; i < lz; i++) if (z[i]) break;
    1307      136034 :     nold = nnew;
    1308      136034 :     if (i >= lz) continue; /* z-1 = 0(t^(nnew + 1)) */
    1309             : 
    1310             :     /* z + i represents (x*q - 1) / t^i */
    1311      100987 :     lz = Flx_lgrenormalizespec (z+i, lz-i);
    1312      100985 :     z = Flx_mulspec(x, z+i, p, pi, lx, lz); /* FIXME: low product */
    1313      100989 :     lz = lgpol(z); z += 2;
    1314      100989 :     if (lz > lnew-i) lz = Flx_lgrenormalizespec(z, lnew-i);
    1315             : 
    1316      100989 :     lx = lz+ i;
    1317      100989 :     y  = x + i; /* x -= z * t^i, in place */
    1318      999773 :     for (i = 0; i < lz; i++) y[i] = Fl_neg(z[i], p);
    1319             :   }
    1320       23161 :   x -= 2; setlg(x, lx + 2); x[1] = T[1];
    1321       23161 :   return x;
    1322             : }
    1323             : 
    1324             : /* allow pi = 0 */
    1325             : static GEN
    1326      158716 : Flx_invBarrett_pre(GEN T, ulong p, ulong pi)
    1327             : {
    1328      158716 :   pari_sp ltop = avma;
    1329      158716 :   long l = lgpol(T);
    1330             :   GEN r;
    1331      158716 :   if (l < 3) return pol0_Flx(T[1]);
    1332      157416 :   if (l < get_Fl_threshold(p, Flx_INVBARRETT_LIMIT, Flx_INVBARRETT2_LIMIT))
    1333             :   {
    1334      134256 :     ulong c = T[l+1];
    1335      134256 :     if (c != 1)
    1336             :     {
    1337       98118 :       ulong ci = Fl_inv(c,p);
    1338       98118 :       T = Flx_Fl_mul_pre(T, ci, p, pi);
    1339       98118 :       r = Flx_invBarrett_basecase(T, p, pi);
    1340       98117 :       r = Flx_Fl_mul_pre(r, ci, p, pi);
    1341             :     }
    1342             :     else
    1343       36138 :       r = Flx_invBarrett_basecase(T, p, pi);
    1344             :   }
    1345             :   else
    1346       23160 :     r = Flx_invBarrett_Newton(T, p, pi);
    1347      157416 :   return gc_uptoleaf(ltop, r);
    1348             : }
    1349             : GEN
    1350           0 : Flx_invBarrett(GEN T, ulong p)
    1351           0 : { return Flx_invBarrett_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1352             : 
    1353             : /* allow pi = 0 */
    1354             : GEN
    1355    96418840 : Flx_get_red_pre(GEN T, ulong p, ulong pi)
    1356             : {
    1357    96418840 :   if (typ(T)!=t_VECSMALL
    1358    96382435 :     || lgpol(T) < get_Fl_threshold(p, Flx_BARRETT_LIMIT,
    1359             :                                        Flx_BARRETT2_LIMIT))
    1360    96398733 :     return T;
    1361        7611 :   retmkvec2(Flx_invBarrett_pre(T, p, pi),T);
    1362             : }
    1363             : GEN
    1364    14286140 : Flx_get_red(GEN T, ulong p)
    1365             : {
    1366    14286140 :   if (typ(T)!=t_VECSMALL
    1367    14286042 :     || lgpol(T) < get_Fl_threshold(p, Flx_BARRETT_LIMIT,
    1368             :                                        Flx_BARRETT2_LIMIT))
    1369    14280288 :     return T;
    1370        5194 :   retmkvec2(Flx_invBarrett_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)),T);
    1371             : }
    1372             : 
    1373             : /* separate from Flx_divrem for maximal speed. */
    1374             : static GEN
    1375   783608848 : Flx_rem_basecase(GEN x, GEN y, ulong p, ulong pi)
    1376             : {
    1377             :   pari_sp av;
    1378             :   GEN z, c;
    1379             :   long dx,dy,dy1,dz,i,j;
    1380             :   ulong p1,inv;
    1381   783608848 :   long vs=x[1];
    1382             : 
    1383   783608848 :   dy = degpol(y); if (!dy) return pol0_Flx(x[1]);
    1384   748247307 :   dx = degpol(x);
    1385   748174126 :   dz = dx-dy; if (dz < 0) return Flx_copy(x);
    1386   748174126 :   x += 2; y += 2;
    1387   748174126 :   inv = y[dy];
    1388   748174126 :   if (inv != 1UL) inv = Fl_inv(inv,p);
    1389   897485789 :   for (dy1=dy-1; dy1>=0 && !y[dy1]; dy1--);
    1390             : 
    1391   749746295 :   c = cgetg(dy+3, t_VECSMALL); c[1]=vs; c += 2; av=avma;
    1392   747948718 :   z = cgetg(dz+3, t_VECSMALL); z[1]=vs; z += 2;
    1393             : 
    1394   746178194 :   if (!pi)
    1395             :   {
    1396   476720351 :     z[dz] = (inv*x[dx]) % p;
    1397  1788235308 :     for (i=dx-1; i>=dy; --i)
    1398             :     {
    1399  1311514957 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1400 10411117378 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1401             :       {
    1402  9099602421 :         p1 += z[j]*y[i-j];
    1403  9099602421 :         if (p1 & HIGHBIT) p1 %= p;
    1404             :       }
    1405  1311514957 :       p1 %= p;
    1406  1311514957 :       z[i-dy] = p1? ((p - p1)*inv) % p: 0;
    1407             :     }
    1408  3258567408 :     for (i=0; i<dy; i++)
    1409             :     {
    1410  2782148780 :       p1 = z[0]*y[i];
    1411 14394557160 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1412             :       {
    1413 11612408380 :         p1 += z[j]*y[i-j];
    1414 11612408380 :         if (p1 & HIGHBIT) p1 %= p;
    1415             :       }
    1416  2782224580 :       c[i] = Fl_sub(x[i], p1%p, p);
    1417             :     }
    1418             :   }
    1419             :   else
    1420             :   {
    1421   269457843 :     z[dz] = Fl_mul_pre(inv, x[dx], p, pi);
    1422   833858518 :     for (i=dx-1; i>=dy; --i)
    1423             :     {
    1424   564582612 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1425  2363618584 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1426  1800047290 :         p1 = Fl_addmul_pre(p1, z[j], y[i - j], p, pi);
    1427   563571294 :       z[i-dy] = p1? Fl_mul_pre(p - p1, inv, p, pi): 0;
    1428             :     }
    1429  2007200027 :     for (i=0; i<dy; i++)
    1430             :     {
    1431  1738681129 :       p1 = Fl_mul_pre(z[0],y[i],p,pi);
    1432  4696739100 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1433  2948317101 :         p1 = Fl_addmul_pre(p1, z[j], y[i - j], p, pi);
    1434  1726680398 :       c[i] = Fl_sub(x[i], p1, p);
    1435             :     }
    1436             :   }
    1437   912062015 :   i = dy-1; while (i>=0 && !c[i]) i--;
    1438   744937526 :   set_avma(av); return Flx_renormalize(c-2, i+3);
    1439             : }
    1440             : 
    1441             : /* as FpX_divrem but working only on ulong types.
    1442             :  * if relevant, *pr is the last object on stack */
    1443             : static GEN
    1444    61733130 : Flx_divrem_basecase(GEN x, GEN y, ulong p, ulong pi, GEN *pr)
    1445             : {
    1446             :   GEN z,q,c;
    1447             :   long dx,dy,dy1,dz,i,j;
    1448             :   ulong p1,inv;
    1449    61733130 :   long sv=x[1];
    1450             : 
    1451    61733130 :   dy = degpol(y);
    1452    61730908 :   if (dy<0) pari_err_INV("Flx_divrem",y);
    1453    61731038 :   if (pr == ONLY_REM) return Flx_rem_basecase(x, y, p, pi);
    1454    61730640 :   if (!dy)
    1455             :   {
    1456     7133239 :     if (pr && pr != ONLY_DIVIDES) *pr = pol0_Flx(sv);
    1457     7133200 :     if (y[2] == 1UL) return Flx_copy(x);
    1458     5128319 :     return Flx_Fl_mul_pre(x, Fl_inv(y[2], p), p, pi);
    1459             :   }
    1460    54597401 :   dx = degpol(x);
    1461    54600240 :   dz = dx-dy;
    1462    54600240 :   if (dz < 0)
    1463             :   {
    1464     1028796 :     q = pol0_Flx(sv);
    1465     1028791 :     if (pr && pr != ONLY_DIVIDES) *pr = Flx_copy(x);
    1466     1028790 :     return q;
    1467             :   }
    1468    53571444 :   x += 2;
    1469    53571444 :   y += 2;
    1470    53571444 :   z = cgetg(dz + 3, t_VECSMALL); z[1] = sv; z += 2;
    1471    53568867 :   inv = uel(y, dy);
    1472    53568867 :   if (inv != 1UL) inv = Fl_inv(inv,p);
    1473    78852595 :   for (dy1=dy-1; dy1>=0 && !y[dy1]; dy1--);
    1474             : 
    1475    53571901 :   if (SMALL_ULONG(p))
    1476             :   {
    1477    51692271 :     z[dz] = (inv*x[dx]) % p;
    1478   131357782 :     for (i=dx-1; i>=dy; --i)
    1479             :     {
    1480    79665511 :       p1 = p - x[i]; /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1481   257892474 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1482             :       {
    1483   178226963 :         p1 += z[j]*y[i-j];
    1484   178226963 :         if (p1 & HIGHBIT) p1 %= p;
    1485             :       }
    1486    79665511 :       p1 %= p;
    1487    79665511 :       z[i-dy] = p1? (long) ((p - p1)*inv) % p: 0;
    1488             :     }
    1489             :   }
    1490             :   else
    1491             :   {
    1492     1879630 :     z[dz] = Fl_mul(inv, x[dx], p);
    1493     9249460 :     for (i=dx-1; i>=dy; --i)
    1494             :     { /* compute -p1 instead of p1 (pb with ulongs otherwise) */
    1495     7370386 :       p1 = p - uel(x,i);
    1496    26364466 :       for (j=i-dy1; j<=i && j<=dz; j++)
    1497    18994081 :         p1 = Fl_add(p1, Fl_mul(z[j],y[i-j],p), p);
    1498     7370385 :       z[i-dy] = p1? Fl_mul(p - p1, inv, p): 0;
    1499             :     }
    1500             :   }
    1501    53571345 :   q = Flx_renormalize(z-2, dz+3);
    1502    53570071 :   if (!pr) return q;
    1503             : 
    1504    26476176 :   c = cgetg(dy + 3, t_VECSMALL); c[1] = sv; c += 2;
    1505    26478329 :   if (SMALL_ULONG(p))
    1506             :   {
    1507   228865819 :     for (i=0; i<dy; i++)
    1508             :     {
    1509   204026597 :       p1 = (ulong)z[0]*y[i];
    1510   478905009 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1511             :       {
    1512   274878412 :         p1 += (ulong)z[j]*y[i-j];
    1513   274878412 :         if (p1 & HIGHBIT) p1 %= p;
    1514             :       }
    1515   204026279 :       c[i] = Fl_sub(x[i], p1%p, p);
    1516             :     }
    1517             :   }
    1518             :   else
    1519             :   {
    1520    16044720 :     for (i=0; i<dy; i++)
    1521             :     {
    1522    14406274 :       p1 = Fl_mul(z[0],y[i],p);
    1523    50246821 :       for (j=maxss(1,i-dy1); j<=i && j<=dz; j++)
    1524    35840547 :         p1 = Fl_add(p1, Fl_mul(z[j],y[i-j],p), p);
    1525    14406278 :       c[i] = Fl_sub(x[i], p1, p);
    1526             :     }
    1527             :   }
    1528    35609207 :   i=dy-1; while (i>=0 && !c[i]) i--;
    1529    26477668 :   c = Flx_renormalize(c-2, i+3);
    1530    26478417 :   if (pr == ONLY_DIVIDES)
    1531         451 :   { if (lg(c) != 2) return NULL; }
    1532             :   else
    1533    26477966 :     *pr = c;
    1534    26478270 :   return q;
    1535             : }
    1536             : 
    1537             : /* Compute x mod T where 2 <= degpol(T) <= l+1 <= 2*(degpol(T)-1)
    1538             :  * and mg is the Barrett inverse of T. */
    1539             : static GEN
    1540      905398 : Flx_divrem_Barrettspec(GEN x, long l, GEN mg, GEN T, ulong p, ulong pi, GEN *pr)
    1541             : {
    1542             :   GEN q, r;
    1543      905398 :   long lt = degpol(T); /*We discard the leading term*/
    1544             :   long ld, lm, lT, lmg;
    1545      905364 :   ld = l-lt;
    1546      905364 :   lm = minss(ld, lgpol(mg));
    1547      905587 :   lT  = Flx_lgrenormalizespec(T+2,lt);
    1548      905726 :   lmg = Flx_lgrenormalizespec(mg+2,lm);
    1549      905617 :   q = Flx_recipspec(x+lt,ld,ld);               /* q = rec(x)      lz<=ld*/
    1550      905108 :   q = Flx_mulspec(q+2,mg+2,p,pi,lgpol(q),lmg); /* q = rec(x) * mg lz<=ld+lm*/
    1551      905633 :   q = Flx_recipspec(q+2,minss(ld,lgpol(q)),ld);/* q = rec (rec(x) * mg) lz<=ld*/
    1552      905107 :   if (!pr) return q;
    1553      897401 :   r = Flx_mulspec(q+2,T+2,p,pi,lgpol(q),lT);   /* r = q*pol      lz<=ld+lt*/
    1554      897933 :   r = Flx_subspec(x,r+2,p,lt,minss(lt,lgpol(r)));/* r = x - q*pol lz<=lt */
    1555      897740 :   if (pr == ONLY_REM) return r;
    1556      428012 :   *pr = r; return q;
    1557             : }
    1558             : 
    1559             : static GEN
    1560      604865 : Flx_divrem_Barrett(GEN x, GEN mg, GEN T, ulong p, ulong pi, GEN *pr)
    1561             : {
    1562      604865 :   GEN q = NULL, r = Flx_copy(x);
    1563      604888 :   long l = lgpol(x), lt = degpol(T), lm = 2*lt-1, v = T[1];
    1564             :   long i;
    1565      604884 :   if (l <= lt)
    1566             :   {
    1567           0 :     if (pr == ONLY_REM) return Flx_copy(x);
    1568           0 :     if (pr == ONLY_DIVIDES) return lgpol(x)? NULL: pol0_Flx(v);
    1569           0 :     if (pr) *pr = Flx_copy(x);
    1570           0 :     return pol0_Flx(v);
    1571             :   }
    1572      604884 :   if (lt <= 1)
    1573        1300 :     return Flx_divrem_basecase(x,T,p,pi,pr);
    1574      603584 :   if (pr != ONLY_REM && l>lm)
    1575       28935 :   { q = zero_zv(l-lt+1); q[1] = T[1]; }
    1576      907006 :   while (l>lm)
    1577             :   {
    1578      303460 :     GEN zr, zq = Flx_divrem_Barrettspec(r+2+l-lm,lm,mg,T,p,pi,&zr);
    1579      303465 :     long lz = lgpol(zr);
    1580      303422 :     if (pr != ONLY_REM)
    1581             :     {
    1582       58141 :       long lq = lgpol(zq);
    1583      883575 :       for(i=0; i<lq; i++) q[2+l-lm+i] = zq[2+i];
    1584             :     }
    1585     4406615 :     for(i=0; i<lz; i++)   r[2+l-lm+i] = zr[2+i];
    1586      303422 :     l = l-lm+lz;
    1587             :   }
    1588      603546 :   if (pr == ONLY_REM)
    1589             :   {
    1590      469773 :     if (l > lt)
    1591      469731 :       r = Flx_divrem_Barrettspec(r+2,l,mg,T,p,pi,ONLY_REM);
    1592             :     else
    1593          42 :       r = Flx_renormalize(r, l+2);
    1594      469770 :     r[1] = v; return r;
    1595             :   }
    1596      133773 :   if (l > lt)
    1597             :   {
    1598      132237 :     GEN zq = Flx_divrem_Barrettspec(r+2,l,mg,T,p,pi, pr ? &r: NULL);
    1599      132237 :     if (!q) q = zq;
    1600             :     else
    1601             :     {
    1602       27361 :       long lq = lgpol(zq);
    1603      159950 :       for(i=0; i<lq; i++) q[2+i] = zq[2+i];
    1604             :     }
    1605             :   }
    1606        1536 :   else if (pr)
    1607        1535 :     r = Flx_renormalize(r, l+2);
    1608      133773 :   q[1] = v; q = Flx_renormalize(q, lg(q));
    1609      133811 :   if (pr == ONLY_DIVIDES) return lgpol(r)? NULL: q;
    1610      133811 :   if (pr) { r[1] = v; *pr = r; }
    1611      133811 :   return q;
    1612             : }
    1613             : 
    1614             : /* allow pi = 0 (SMALL_ULONG) */
    1615             : GEN
    1616    79167133 : Flx_divrem_pre(GEN x, GEN T, ulong p, ulong pi, GEN *pr)
    1617             : {
    1618             :   GEN B, y;
    1619             :   long dy, dx, d;
    1620    79167133 :   if (pr==ONLY_REM) return Flx_rem_pre(x, T, p, pi);
    1621    61855862 :   y = get_Flx_red(T, &B);
    1622    61867473 :   dy = degpol(y); dx = degpol(x); d = dx-dy;
    1623    61863958 :   if (!B && d+3 < get_Fl_threshold(p, Flx_DIVREM_BARRETT_LIMIT,Flx_DIVREM2_BARRETT_LIMIT))
    1624    61730549 :     return Flx_divrem_basecase(x,y,p,pi,pr);
    1625             :   else
    1626             :   {
    1627      134713 :     pari_sp av = avma;
    1628      134713 :     GEN mg = B? B: Flx_invBarrett_pre(y, p, pi);
    1629      134713 :     GEN q1 = Flx_divrem_Barrett(x,mg,y,p,pi,pr);
    1630      134713 :     if (!q1) return gc_NULL(av);
    1631      134713 :     if (!pr || pr==ONLY_DIVIDES) return gc_uptoleaf(av, q1);
    1632      126413 :     return gc_all(av, 2, &q1, pr);
    1633             :   }
    1634             : }
    1635             : GEN
    1636    30288330 : Flx_divrem(GEN x, GEN T, ulong p, GEN *pr)
    1637    30288330 : { return Flx_divrem_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p), pr); }
    1638             : 
    1639             : GEN
    1640   906792172 : Flx_rem_pre(GEN x, GEN T, ulong p, ulong pi)
    1641             : {
    1642   906792172 :   GEN B, y = get_Flx_red(T, &B);
    1643   906727470 :   long d = degpol(x) - degpol(y);
    1644   906449383 :   if (d < 0) return Flx_copy(x);
    1645   784054306 :   if (!B && d+3 < get_Fl_threshold(p, Flx_REM_BARRETT_LIMIT,Flx_REM2_BARRETT_LIMIT))
    1646   783550044 :     return Flx_rem_basecase(x,y,p, pi);
    1647             :   else
    1648             :   {
    1649      470152 :     pari_sp av=avma;
    1650      470152 :     GEN mg = B ? B: Flx_invBarrett_pre(y, p, pi);
    1651      470152 :     GEN r  = Flx_divrem_Barrett(x, mg, y, p, pi, ONLY_REM);
    1652      470167 :     return gc_uptoleaf(av, r);
    1653             :   }
    1654             : }
    1655             : GEN
    1656    41845438 : Flx_rem(GEN x, GEN T, ulong p)
    1657    41845438 : { return Flx_rem_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1658             : 
    1659             : /* reduce T mod (X^n - 1, p). Shallow function */
    1660             : GEN
    1661     5080788 : Flx_mod_Xnm1(GEN T, ulong n, ulong p)
    1662             : {
    1663     5080788 :   long i, j, L = lg(T), l = n+2;
    1664             :   GEN S;
    1665     5080788 :   if (L <= l || n & ~LGBITS) return T;
    1666        3445 :   S = cgetg(l, t_VECSMALL);
    1667        3445 :   S[1] = T[1];
    1668       13998 :   for (i = 2; i < l; i++) S[i] = T[i];
    1669        9405 :   for (j = 2; i < L; i++) {
    1670        5960 :     S[j] = Fl_add(S[j], T[i], p);
    1671        5960 :     if (++j == l) j = 2;
    1672             :   }
    1673        3445 :   return Flx_renormalize(S, l);
    1674             : }
    1675             : /* reduce T mod (X^n + 1, p). Shallow function */
    1676             : GEN
    1677       30101 : Flx_mod_Xn1(GEN T, ulong n, ulong p)
    1678             : {
    1679       30101 :   long i, j, L = lg(T), l = n+2, s = -1;
    1680             :   GEN S;
    1681       30101 :   if (L <= l || n & ~LGBITS) return T;
    1682        2677 :   S = cgetg(l, t_VECSMALL);
    1683        2677 :   S[1] = T[1];
    1684       11332 :   for (i = 2; i < l; i++) S[i] = T[i];
    1685        6959 :   for (j = 2; i < L; i++) {
    1686        4282 :     S[j] = s==-1 ? Fl_sub(S[j], T[i], p): Fl_add(S[j], T[i], p);
    1687        4282 :     if (++j == l) { j = 2; s = -s; }
    1688             :   }
    1689        2677 :   return Flx_renormalize(S, l);
    1690             : }
    1691             : 
    1692             : struct _Flxq {
    1693             :   GEN aut, T;
    1694             :   ulong p, pi;
    1695             : };
    1696             : /* allow pi = 0 */
    1697             : static void
    1698    69038618 : set_Flxq_pre(struct _Flxq *D, GEN T, ulong p, ulong pi)
    1699             : {
    1700    69038618 :   D->p = p;
    1701    69038618 :   D->pi = pi;
    1702    69038618 :   D->T = Flx_get_red_pre(T, p, pi);
    1703    69033206 : }
    1704             : static void
    1705       68922 : set_Flxq(struct _Flxq *D, GEN T, ulong p)
    1706       68922 : { set_Flxq_pre(D, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    1707             : 
    1708             : static GEN
    1709           0 : _Flx_divrem(void * E, GEN x, GEN y, GEN *r)
    1710             : {
    1711           0 :   struct _Flxq *D = (struct _Flxq*) E;
    1712           0 :   return Flx_divrem_pre(x, y, D->p, D->pi, r);
    1713             : }
    1714             : static GEN
    1715      389834 : _Flx_add(void * E, GEN x, GEN y) {
    1716      389834 :   struct _Flxq *D = (struct _Flxq*) E;
    1717      389834 :   return Flx_add(x, y, D->p);
    1718             : }
    1719             : static GEN
    1720    10465214 : _Flx_mul(void *E, GEN x, GEN y) {
    1721    10465214 :   struct _Flxq *D = (struct _Flxq*) E;
    1722    10465214 :   return Flx_mul_pre(x, y, D->p, D->pi);
    1723             : }
    1724             : static GEN
    1725           0 : _Flx_sqr(void *E, GEN x) {
    1726           0 :   struct _Flxq *D = (struct _Flxq*) E;
    1727           0 :   return Flx_sqr_pre(x, D->p, D->pi);
    1728             : }
    1729             : 
    1730             : static struct bb_ring Flx_ring = { _Flx_add,_Flx_mul,_Flx_sqr };
    1731             : 
    1732             : GEN
    1733           0 : Flx_digits(GEN x, GEN T, ulong p)
    1734             : {
    1735             :   struct _Flxq D;
    1736           0 :   long d = degpol(T), n = (lgpol(x)+d-1)/d;
    1737           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    1738           0 :   return gen_digits(x,T,n,(void *)&D, &Flx_ring, _Flx_divrem);
    1739             : }
    1740             : 
    1741             : GEN
    1742           0 : FlxV_Flx_fromdigits(GEN x, GEN T, ulong p)
    1743             : {
    1744             :   struct _Flxq D;
    1745           0 :   D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    1746           0 :   return gen_fromdigits(x,T,(void *)&D, &Flx_ring);
    1747             : }
    1748             : 
    1749             : long
    1750     4146325 : Flx_val(GEN x)
    1751             : {
    1752     4146325 :   long i, l=lg(x);
    1753     4146325 :   if (l==2)  return LONG_MAX;
    1754     4155116 :   for (i=2; i<l && x[i]==0; i++) /*empty*/;
    1755     4146325 :   return i-2;
    1756             : }
    1757             : long
    1758    26264542 : Flx_valrem(GEN x, GEN *Z)
    1759             : {
    1760    26264542 :   long v, i, l=lg(x);
    1761             :   GEN y;
    1762    26264542 :   if (l==2) { *Z = Flx_copy(x); return LONG_MAX; }
    1763    28441130 :   for (i=2; i<l && x[i]==0; i++) /*empty*/;
    1764    26264542 :   v = i-2;
    1765    26264542 :   if (v == 0) { *Z = x; return 0; }
    1766     1026137 :   l -= v;
    1767     1026137 :   y = cgetg(l, t_VECSMALL); y[1] = x[1];
    1768     2626178 :   for (i=2; i<l; i++) y[i] = x[i+v];
    1769     1023369 :   *Z = y; return v;
    1770             : }
    1771             : 
    1772             : GEN
    1773    21150694 : Flx_deriv(GEN z, ulong p)
    1774             : {
    1775    21150694 :   long i,l = lg(z)-1;
    1776             :   GEN x;
    1777    21150694 :   if (l < 2) l = 2;
    1778    21150694 :   x = cgetg(l, t_VECSMALL); x[1] = z[1]; z++;
    1779    21148874 :   if (HIGHWORD(l | p))
    1780    57465060 :     for (i=2; i<l; i++) x[i] = Fl_mul((ulong)i-1, z[i], p);
    1781             :   else
    1782    85393894 :     for (i=2; i<l; i++) x[i] = ((i-1) * z[i]) % p;
    1783    21150312 :   return Flx_renormalize(x,l);
    1784             : }
    1785             : 
    1786             : static GEN
    1787      422819 : Flx_integXn(GEN x, long n, ulong p)
    1788             : {
    1789      422819 :   long i, lx = lg(x);
    1790             :   GEN y;
    1791      422819 :   if (lx == 2) return Flx_copy(x);
    1792      413006 :   y = cgetg(lx, t_VECSMALL); y[1] = x[1];
    1793     2097100 :   for (i=2; i<lx; i++)
    1794             :   {
    1795     1683483 :     ulong xi = uel(x,i);
    1796     1683483 :     if (xi == 0)
    1797       13345 :       uel(y,i) = 0;
    1798             :     else
    1799             :     {
    1800     1670138 :       ulong j = n+i-1;
    1801     1670138 :       ulong d = ugcd(j, xi);
    1802     1670020 :       if (d==1)
    1803     1018452 :         uel(y,i) = Fl_div(xi, j, p);
    1804             :       else
    1805      651568 :         uel(y,i) = Fl_div(xi/d, j/d, p);
    1806             :     }
    1807             :   }
    1808      413617 :   return Flx_renormalize(y, lx);;
    1809             : }
    1810             : 
    1811             : GEN
    1812           0 : Flx_integ(GEN x, ulong p)
    1813             : {
    1814           0 :   long i, lx = lg(x);
    1815             :   GEN y;
    1816           0 :   if (lx == 2) return Flx_copy(x);
    1817           0 :   y = cgetg(lx+1, t_VECSMALL); y[1] = x[1];
    1818           0 :   uel(y,2) = 0;
    1819           0 :   for (i=3; i<=lx; i++)
    1820           0 :     uel(y,i) = uel(x,i-1) ? Fl_div(uel(x,i-1), (i-2)%p, p): 0UL;
    1821           0 :   return Flx_renormalize(y, lx+1);;
    1822             : }
    1823             : 
    1824             : /* assume p prime */
    1825             : GEN
    1826       13482 : Flx_diff1(GEN P, ulong p)
    1827             : {
    1828       13482 :   return Flx_sub(Flx_translate1(P, p), P, p);
    1829             : }
    1830             : 
    1831             : GEN
    1832      420512 : Flx_deflate(GEN x0, long d)
    1833             : {
    1834             :   GEN z, y, x;
    1835      420512 :   long i,id, dy, dx = degpol(x0);
    1836      420511 :   if (d == 1 || dx <= 0) return Flx_copy(x0);
    1837      357012 :   dy = dx/d;
    1838      357012 :   y = cgetg(dy+3, t_VECSMALL); y[1] = x0[1];
    1839      357010 :   z = y + 2;
    1840      357010 :   x = x0+ 2;
    1841     1160919 :   for (i=id=0; i<=dy; i++,id+=d) z[i] = x[id];
    1842      357010 :   return y;
    1843             : }
    1844             : 
    1845             : GEN
    1846      160642 : Flx_inflate(GEN x0, long d)
    1847             : {
    1848      160642 :   long i, id, dy, dx = degpol(x0);
    1849      160640 :   GEN x = x0 + 2, z, y;
    1850      160640 :   if (dx <= 0) return Flx_copy(x0);
    1851      159578 :   dy = dx*d;
    1852      159578 :   y = cgetg(dy+3, t_VECSMALL); y[1] = x0[1];
    1853      159570 :   z = y + 2;
    1854     8881006 :   for (i=0; i<=dy; i++) z[i] = 0;
    1855     4321497 :   for (i=id=0; i<=dx; i++,id+=d) z[id] = x[i];
    1856      159570 :   return y;
    1857             : }
    1858             : 
    1859             : /* write p(X) = a_0(X^k) + X*a_1(X^k) + ... + X^(k-1)*a_{k-1}(X^k) */
    1860             : GEN
    1861      147607 : Flx_splitting(GEN p, long k)
    1862             : {
    1863      147607 :   long n = degpol(p), v = p[1], m, i, j, l;
    1864             :   GEN r;
    1865             : 
    1866      147604 :   m = n/k;
    1867      147604 :   r = cgetg(k+1,t_VEC);
    1868      680117 :   for(i=1; i<=k; i++)
    1869             :   {
    1870      532518 :     gel(r,i) = cgetg(m+3, t_VECSMALL);
    1871      532508 :     mael(r,i,1) = v;
    1872             :   }
    1873     4494102 :   for (j=1, i=0, l=2; i<=n; i++)
    1874             :   {
    1875     4346503 :     mael(r,j,l) = p[2+i];
    1876     4346503 :     if (j==k) { j=1; l++; } else j++;
    1877             :   }
    1878      680134 :   for(i=1; i<=k; i++)
    1879      532541 :     gel(r,i) = Flx_renormalize(gel(r,i),i<j?l+1:l);
    1880      147593 :   return r;
    1881             : }
    1882             : 
    1883             : /* ux + vy */
    1884             : static GEN
    1885      416574 : Flx_addmulmul(GEN u, GEN v, GEN x, GEN y, ulong p, ulong pi)
    1886      416574 : { return Flx_add(Flx_mul_pre(u,x, p,pi), Flx_mul_pre(v,y, p,pi), p); }
    1887             : 
    1888             : static GEN
    1889       25998 : FlxM_Flx_mul2(GEN M, GEN x, GEN y, ulong p, ulong pi)
    1890             : {
    1891       25998 :   GEN res = cgetg(3, t_COL);
    1892       25997 :   gel(res, 1) = Flx_addmulmul(gcoeff(M,1,1), gcoeff(M,1,2), x, y, p, pi);
    1893       26000 :   gel(res, 2) = Flx_addmulmul(gcoeff(M,2,1), gcoeff(M,2,2), x, y, p, pi);
    1894       26000 :   return res;
    1895             : }
    1896             : 
    1897             : #if 0
    1898             : static GEN
    1899             : FlxM_mul2_old(GEN M, GEN N, ulong p)
    1900             : {
    1901             :   GEN res = cgetg(3, t_MAT);
    1902             :   gel(res, 1) = FlxM_Flx_mul2(M,gcoeff(N,1,1),gcoeff(N,2,1),p);
    1903             :   gel(res, 2) = FlxM_Flx_mul2(M,gcoeff(N,1,2),gcoeff(N,2,2),p);
    1904             :   return res;
    1905             : }
    1906             : #endif
    1907             : /* A,B are 2x2 matrices, Flx entries. Return A x B using Strassen 7M formula */
    1908             : static GEN
    1909        7099 : FlxM_mul2(GEN A, GEN B, ulong p, ulong pi)
    1910             : {
    1911        7099 :   GEN A11=gcoeff(A,1,1),A12=gcoeff(A,1,2), B11=gcoeff(B,1,1),B12=gcoeff(B,1,2);
    1912        7099 :   GEN A21=gcoeff(A,2,1),A22=gcoeff(A,2,2), B21=gcoeff(B,2,1),B22=gcoeff(B,2,2);
    1913        7099 :   GEN M1 = Flx_mul_pre(Flx_add(A11,A22, p), Flx_add(B11,B22, p), p, pi);
    1914        7099 :   GEN M2 = Flx_mul_pre(Flx_add(A21,A22, p), B11, p, pi);
    1915        7099 :   GEN M3 = Flx_mul_pre(A11, Flx_sub(B12,B22, p), p, pi);
    1916        7099 :   GEN M4 = Flx_mul_pre(A22, Flx_sub(B21,B11, p), p, pi);
    1917        7099 :   GEN M5 = Flx_mul_pre(Flx_add(A11,A12, p), B22, p, pi);
    1918        7099 :   GEN M6 = Flx_mul_pre(Flx_sub(A21,A11, p), Flx_add(B11,B12, p), p, pi);
    1919        7099 :   GEN M7 = Flx_mul_pre(Flx_sub(A12,A22, p), Flx_add(B21,B22, p), p, pi);
    1920        7099 :   GEN T1 = Flx_add(M1,M4, p), T2 = Flx_sub(M7,M5, p);
    1921        7099 :   GEN T3 = Flx_sub(M1,M2, p), T4 = Flx_add(M3,M6, p);
    1922        7099 :   retmkmat22(Flx_add(T1,T2, p), Flx_add(M3,M5, p),
    1923             :              Flx_add(M2,M4, p), Flx_add(T3,T4, p));
    1924             : }
    1925             : 
    1926             : /* Return [0,1;1,-q]*M */
    1927             : static GEN
    1928        6927 : Flx_FlxM_qmul(GEN q, GEN M, ulong p, ulong pi)
    1929             : {
    1930        6927 :   GEN u = Flx_mul_pre(gcoeff(M,2,1), q, p, pi);
    1931        6927 :   GEN v = Flx_mul_pre(gcoeff(M,2,2), q, p, pi);
    1932        6927 :   retmkmat22(gcoeff(M,2,1), gcoeff(M,2,2),
    1933             :     Flx_sub(gcoeff(M,1,1), u, p), Flx_sub(gcoeff(M,1,2), v, p));
    1934             : }
    1935             : 
    1936             : static GEN
    1937         911 : matid2_FlxM(long v)
    1938         911 : { retmkmat22(pol1_Flx(v),pol0_Flx(v),pol0_Flx(v),pol1_Flx(v)); }
    1939             : 
    1940             : static GEN
    1941          13 : matJ2_FlxM(long v)
    1942          13 : { retmkmat22(pol0_Flx(v),pol1_Flx(v),pol1_Flx(v),pol0_Flx(v)); }
    1943             : 
    1944             : struct Flx_res
    1945             : {
    1946             :    ulong res, lc;
    1947             :    long deg0, deg1, off;
    1948             : };
    1949             : 
    1950             : INLINE void
    1951        9405 : Flx_halfres_update_pre(long da, long db, long dr, ulong p, ulong pi, struct Flx_res *res)
    1952             : {
    1953        9405 :   if (dr >= 0)
    1954             :   {
    1955        9405 :     if (res->lc != 1)
    1956             :     {
    1957        7596 :       if (pi)
    1958             :       {
    1959        3127 :         res->lc  = Fl_powu_pre(res->lc, da - dr, p, pi);
    1960        3127 :         res->res = Fl_mul_pre(res->res, res->lc, p, pi);
    1961             :       } else
    1962             :       {
    1963        4469 :         res->lc  = Fl_powu(res->lc, da - dr, p);
    1964        4469 :         res->res = Fl_mul(res->res, res->lc, p);
    1965             :       }
    1966             :     }
    1967        9405 :     if (both_odd(da + res->off, db + res->off))
    1968          63 :       res->res = Fl_neg(res->res, p);
    1969             :   } else
    1970             :   {
    1971           0 :     if (db == 0)
    1972             :     {
    1973           0 :       if (res->lc != 1)
    1974             :       {
    1975           0 :         if (pi)
    1976             :         {
    1977           0 :           res->lc  = Fl_powu_pre(res->lc, da, p, pi);
    1978           0 :           res->res = Fl_mul_pre(res->res, res->lc, p, pi);
    1979             :         } else
    1980             :         {
    1981           0 :           res->lc  = Fl_powu(res->lc, da, p);
    1982           0 :           res->res = Fl_mul(res->res, res->lc, p);
    1983             :         }
    1984             :       }
    1985             :     } else
    1986           0 :       res->res = 0;
    1987             :   }
    1988        9405 : }
    1989             : 
    1990             : static GEN
    1991     1107264 : Flx_halfres_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *pa, GEN *pb, struct Flx_res *res)
    1992             : {
    1993     1107264 :   pari_sp av = avma;
    1994             :   GEN u, u1, v, v1, M;
    1995     1107264 :   long vx = a[1], n = lgpol(a)>>1;
    1996     1107261 :   u1 = v = pol0_Flx(vx);
    1997     1107258 :   u = v1 = pol1_Flx(vx);
    1998     6852860 :   while (lgpol(b)>n)
    1999             :   {
    2000             :     GEN r, q;
    2001     5745601 :     q = Flx_divrem_pre(a,b,p,pi, &r);
    2002     5745699 :     if (res)
    2003             :     {
    2004        8362 :       long da = degpol(a), db=degpol(b), dr = degpol(r);
    2005        8362 :       res->lc = b[db+2];
    2006        8362 :       if (dr >= n)
    2007        7133 :         Flx_halfres_update_pre(da, db, dr, p, pi, res);
    2008             :       else
    2009             :       {
    2010        1229 :         res->deg0 = da;
    2011        1229 :         res->deg1 = db;
    2012             :       }
    2013             :     }
    2014     5745699 :     a = b; b = r; swap(u,u1); swap(v,v1);
    2015     5745699 :     u1 = Flx_sub(u1, Flx_mul(u, q, p), p);
    2016     5745562 :     v1 = Flx_sub(v1, Flx_mul(v, q, p), p);
    2017     5745609 :     if (gc_needed(av,2))
    2018             :     {
    2019           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_halfgcd (d = %ld)",degpol(b));
    2020           0 :       (void)gc_all(av,6, &a,&b,&u1,&v1,&u,&v);
    2021             :     }
    2022             :   }
    2023     1107113 :   M = mkmat22(u,v,u1,v1); *pa = a; *pb = b;
    2024     1107246 :   return gc_all(av,3, &M, pa, pb);
    2025             : }
    2026             : 
    2027             : static GEN Flx_halfres_i(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res);
    2028             : 
    2029             : static GEN
    2030       19964 : Flx_halfres_split(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res)
    2031             : {
    2032       19964 :   pari_sp av = avma;
    2033             :   GEN R, S, T, V1, V2;
    2034             :   GEN x1, y1, r, q;
    2035       19964 :   long l = lgpol(x), n = l>>1, k;
    2036       19964 :   if (lgpol(y) <= n)
    2037         871 :     { *a = Flx_copy(x); *b = Flx_copy(y); return matid2_FlxM(x[1]); }
    2038       19093 :   if (res)
    2039             :   {
    2040        3263 :      res->lc = Flx_lead(y);
    2041        3263 :      res->deg0 -= n;
    2042        3263 :      res->deg1 -= n;
    2043        3263 :      res->off += n;
    2044             :   }
    2045       19093 :   R = Flx_halfres_i(Flx_shift(x,-n),Flx_shift(y,-n),p,pi,a,b,res);
    2046       19093 :   if (res)
    2047             :   {
    2048        3263 :     res->off -= n;
    2049        3263 :     res->deg0 += n;
    2050        3263 :     res->deg1 += n;
    2051             :   }
    2052       19093 :   V1 = FlxM_Flx_mul2(R, Flxn_red(x,n), Flxn_red(y,n), p, pi);
    2053       19093 :   x1 = Flx_add(Flx_shift(*a,n), gel(V1,1), p);
    2054       19093 :   y1 = Flx_add(Flx_shift(*b,n), gel(V1,2), p);
    2055       19093 :   if (lgpol(y1) <= n)
    2056       12186 :     { *a = x1; *b = y1; return gc_all(av, 3, &R, a, b); }
    2057        6907 :   k = 2*n-degpol(y1);
    2058        6907 :   q = Flx_divrem_pre(x1, y1, p, pi, &r);
    2059        6907 :   if (res)
    2060             :   {
    2061        1043 :     long dx1 = degpol(x1), dy1 = degpol(y1), dr = degpol(r);
    2062        1043 :     if (dy1 < degpol(y))
    2063         185 :       Flx_halfres_update_pre(res->deg0, res->deg1, dy1, p, pi, res);
    2064        1043 :     res->lc = uel(y1, dy1+2);
    2065        1043 :     res->deg0 = dx1;
    2066        1043 :     res->deg1 = dy1;
    2067        1043 :     if (dr >= n)
    2068             :     {
    2069        1043 :       Flx_halfres_update_pre(dx1, dy1, dr, p, pi, res);
    2070        1043 :       res->deg0 = dy1;
    2071        1043 :       res->deg1 = dr;
    2072             :     }
    2073        1043 :     res->deg0 -= k;
    2074        1043 :     res->deg1 -= k;
    2075        1043 :     res->off += k;
    2076             :   }
    2077        6907 :   S = Flx_halfres_i(Flx_shift(y1,-k), Flx_shift(r,-k), p, pi, a, b, res);
    2078        6907 :   if (res)
    2079             :   {
    2080        1043 :     res->deg0 += k;
    2081        1043 :     res->deg1 += k;
    2082        1043 :     res->off -= k;
    2083             :   }
    2084        6907 :   T = FlxM_mul2(S, Flx_FlxM_qmul(q, R, p,pi), p, pi);
    2085        6907 :   V2 = FlxM_Flx_mul2(S, Flxn_red(y1,k), Flxn_red(r,k), p, pi);
    2086        6907 :   *a = Flx_add(Flx_shift(*a,k), gel(V2,1), p);
    2087        6907 :   *b = Flx_add(Flx_shift(*b,k), gel(V2,2), p);
    2088        6907 :   return gc_all(av, 3, &T, a, b);
    2089             : }
    2090             : 
    2091             : static GEN
    2092     1127231 : Flx_halfres_i(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, struct Flx_res *res)
    2093             : {
    2094     1127231 :   if (lgpol(x) < get_Fl_threshold(p, Flx_HALFGCD_LIMIT, Flx_HALFGCD2_LIMIT))
    2095     1107264 :     return Flx_halfres_basecase(x, y, p, pi, a, b, res);
    2096       19964 :   return Flx_halfres_split(x, y, p, pi, a, b, res);
    2097             : }
    2098             : 
    2099             : static GEN
    2100     1100188 : Flx_halfgcd_all_i(GEN x, GEN y, ulong p, ulong pi, GEN *pa, GEN *pb)
    2101             : {
    2102             :   GEN a, b, R;
    2103     1100188 :   R = Flx_halfres_i(x, y, p, pi, &a, &b, NULL);
    2104     1100196 :   if (pa) *pa = a;
    2105     1100196 :   if (pb) *pb = b;
    2106     1100196 :   return R;
    2107             : }
    2108             : 
    2109             : /* Return M in GL_2(Fl[X]) such that:
    2110             : if [a',b']~=M*[a,b]~ then degpol(a')>= (lgpol(a)>>1) >degpol(b')
    2111             : */
    2112             : 
    2113             : GEN
    2114     1100190 : Flx_halfgcd_all_pre(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b)
    2115             : {
    2116             :   pari_sp av;
    2117             :   GEN R, q ,r;
    2118     1100190 :   long lx = lgpol(x), ly = lgpol(y);
    2119     1100186 :   if (!lx)
    2120             :   {
    2121           0 :     if (a) *a = Flx_copy(y);
    2122           0 :     if (b) *b = Flx_copy(x);
    2123           0 :     return matJ2_FlxM(x[1]);
    2124             :   }
    2125     1100186 :   if (ly < lx) return Flx_halfgcd_all_i(x, y, p, pi, a, b);
    2126        8356 :   av = avma;
    2127        8356 :   q = Flx_divrem(y,x,p,&r);
    2128        8356 :   R = Flx_halfgcd_all_i(x, r, p, pi, a, b);
    2129        8356 :   gcoeff(R,1,1) = Flx_sub(gcoeff(R,1,1), Flx_mul_pre(q,gcoeff(R,1,2), p,pi), p);
    2130        8356 :   gcoeff(R,2,1) = Flx_sub(gcoeff(R,2,1), Flx_mul_pre(q,gcoeff(R,2,2), p,pi), p);
    2131        8356 :   return !a && b ? gc_all(av, 2, &R, b): gc_all(av, 1+!!a+!!b, &R, a, b);
    2132             : }
    2133             : 
    2134             : GEN
    2135         154 : Flx_halfgcd_all(GEN x, GEN y, ulong p, GEN *a, GEN *b)
    2136         154 : { return Flx_halfgcd_all_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p), a, b); }
    2137             : 
    2138             : GEN
    2139      846169 : Flx_halfgcd_pre(GEN x, GEN y, ulong p, ulong pi)
    2140      846169 : { return Flx_halfgcd_all_pre(x, y, p, pi, NULL, NULL); }
    2141             : 
    2142             : GEN
    2143           0 : Flx_halfgcd(GEN x, GEN y, ulong p)
    2144           0 : { return Flx_halfgcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2145             : 
    2146             : /*Do not garbage collect*/
    2147             : static GEN
    2148    82929761 : Flx_gcd_basecase(GEN a, GEN b, ulong p, ulong pi)
    2149             : {
    2150    82929761 :   pari_sp av = avma;
    2151    82929761 :   ulong iter = 0;
    2152    82929761 :   if (lg(b) > lg(a)) swap(a, b);
    2153   286374225 :   while (lgpol(b))
    2154             :   {
    2155   202989195 :     GEN c = Flx_rem_pre(a,b,p,pi);
    2156   203444464 :     iter++; a = b; b = c;
    2157   203444464 :     if (gc_needed(av,2))
    2158             :     {
    2159           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_gcd (d = %ld)",degpol(c));
    2160           0 :       (void)gc_all(av,2, &a,&b);
    2161             :     }
    2162             :   }
    2163    82880843 :   return iter < 2 ? Flx_copy(a) : a;
    2164             : }
    2165             : 
    2166             : GEN
    2167    84580452 : Flx_gcd_pre(GEN x, GEN y, ulong p, ulong pi)
    2168             : {
    2169    84580452 :   pari_sp av = avma;
    2170             :   long lim;
    2171    84580452 :   if (!lgpol(x)) return Flx_copy(y);
    2172    82939842 :   lim = get_Fl_threshold(p, Flx_GCD_LIMIT, Flx_GCD2_LIMIT);
    2173    82945304 :   while (lgpol(y) >= lim)
    2174             :   {
    2175         229 :     if (lgpol(y)<=(lgpol(x)>>1))
    2176             :     {
    2177           0 :       GEN r = Flx_rem_pre(x, y, p, pi);
    2178           0 :       x = y; y = r;
    2179             :     }
    2180         229 :     (void) Flx_halfgcd_all_pre(x, y, p, pi, &x, &y);
    2181         229 :     if (gc_needed(av,2))
    2182             :     {
    2183           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_gcd (y = %ld)",degpol(y));
    2184           0 :       (void)gc_all(av,2,&x,&y);
    2185             :     }
    2186             :   }
    2187    82927524 :   return gc_uptoleaf(av, Flx_gcd_basecase(x,y,p,pi));
    2188             : }
    2189             : GEN
    2190    32496849 : Flx_gcd(GEN x, GEN y, ulong p)
    2191    32496849 : { return Flx_gcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2192             : 
    2193             : int
    2194     8532129 : Flx_is_squarefree(GEN z, ulong p)
    2195             : {
    2196     8532129 :   pari_sp av = avma;
    2197     8532129 :   GEN d = Flx_gcd(z, Flx_deriv(z,p) , p);
    2198     8531952 :   return gc_bool(av, degpol(d) == 0);
    2199             : }
    2200             : 
    2201             : static long
    2202      127172 : Flx_is_smooth_squarefree(GEN f, long r, ulong p, ulong pi)
    2203             : {
    2204      127172 :   pari_sp av = avma;
    2205             :   long i;
    2206      127172 :   GEN sx = polx_Flx(f[1]), a = sx;
    2207      535901 :   for(i=1;;i++)
    2208             :   {
    2209      535901 :     if (degpol(f)<=r) return gc_long(av,1);
    2210      513942 :     a = Flxq_powu_pre(Flx_rem_pre(a,f,p,pi), p, f, p, pi);
    2211      513979 :     if (Flx_equal(a, sx)) return gc_long(av,1);
    2212      510494 :     if (i==r) return gc_long(av,0);
    2213      408583 :     f = Flx_div_pre(f, Flx_gcd_pre(Flx_sub(a,sx,p),f,p,pi),p,pi);
    2214             :   }
    2215             : }
    2216             : 
    2217             : static long
    2218        8201 : Flx_is_l_pow(GEN x, ulong p)
    2219             : {
    2220        8201 :   ulong i, lx = lgpol(x);
    2221       16379 :   for (i=1; i<lx; i++)
    2222       14696 :     if (x[i+2] && i%p) return 0;
    2223        1683 :   return 1;
    2224             : }
    2225             : 
    2226             : int
    2227      127209 : Flx_is_smooth_pre(GEN g, long r, ulong p, ulong pi)
    2228             : {
    2229             :   while (1)
    2230        8202 :   {
    2231      127209 :     GEN f = Flx_gcd_pre(g, Flx_deriv(g, p), p, pi);
    2232      127004 :     if (!Flx_is_smooth_squarefree(Flx_div_pre(g, f, p, pi), r, p, pi))
    2233      101924 :       return 0;
    2234       25274 :     if (degpol(f)==0) return 1;
    2235        8189 :     g = Flx_is_l_pow(f,p) ? Flx_deflate(f, p): f;
    2236             :   }
    2237             : }
    2238             : int
    2239       74256 : Flx_is_smooth(GEN g, long r, ulong p)
    2240       74256 : { return Flx_is_smooth_pre(g, r, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2241             : 
    2242             : static GEN
    2243     6266079 : Flx_extgcd_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2244             : {
    2245     6266079 :   pari_sp av=avma;
    2246             :   GEN u,v,u1,v1;
    2247     6266079 :   long vx = a[1];
    2248     6266079 :   v = pol0_Flx(vx); v1 = pol1_Flx(vx);
    2249     6265920 :   if (ptu) { u = pol1_Flx(vx); u1 = pol0_Flx(vx); }
    2250    28008040 :   while (lgpol(b))
    2251             :   {
    2252    21741691 :     GEN r, q = Flx_divrem_pre(a,b,p,pi, &r);
    2253    21742438 :     a = b; b = r;
    2254    21742438 :     if (ptu)
    2255             :     {
    2256     2424718 :       swap(u,u1);
    2257     2424718 :       u1 = Flx_sub(u1, Flx_mul_pre(u, q, p, pi), p);
    2258             :     }
    2259    21742435 :     swap(v,v1);
    2260    21742435 :     v1 = Flx_sub(v1, Flx_mul_pre(v, q, p, pi), p);
    2261    21742126 :     if (gc_needed(av,2))
    2262             :     {
    2263           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_extgcd (d = %ld)",degpol(a));
    2264           0 :       (void)gc_all(av,ptu ? 6: 4, &a,&b,&v,&v1,&u,&u1);
    2265             :     }
    2266             :   }
    2267     6266039 :   if (ptu) *ptu = u;
    2268     6266039 :   *ptv = v;
    2269     6266039 :   return a;
    2270             : }
    2271             : 
    2272             : static GEN
    2273      146554 : Flx_extgcd_halfgcd(GEN x, GEN y, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2274             : {
    2275             :   GEN u, v;
    2276      146554 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2277      146554 :   GEN V = cgetg(expu(lgpol(y))+2,t_VEC);
    2278      146554 :   long i, n = 0, vs = x[1];
    2279      398795 :   while (lgpol(y) >= lim)
    2280             :   {
    2281      252241 :     if (lgpol(y)<=(lgpol(x)>>1))
    2282             :     {
    2283          26 :       GEN r, q = Flx_divrem_pre(x, y, p, pi, &r);
    2284          26 :       x = y; y = r;
    2285          26 :       gel(V,++n) = mkmat22(pol0_Flx(vs),pol1_Flx(vs),pol1_Flx(vs),Flx_neg(q,p));
    2286             :     } else
    2287      252215 :       gel(V,++n) = Flx_halfgcd_all_pre(x, y, p, pi, &x, &y);
    2288             :   }
    2289      146554 :   y = Flx_extgcd_basecase(x,y,p,pi,&u,&v);
    2290      252241 :   for (i = n; i>1; i--)
    2291             :   {
    2292      105687 :     GEN R = gel(V,i);
    2293      105687 :     GEN u1 = Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi);
    2294      105687 :     GEN v1 = Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi);
    2295      105687 :     u = u1; v = v1;
    2296             :   }
    2297             :   {
    2298      146554 :     GEN R = gel(V,1);
    2299      146554 :     if (ptu)
    2300        6543 :       *ptu = Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi);
    2301      146554 :     *ptv   = Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi);
    2302             :   }
    2303      146553 :   return y;
    2304             : }
    2305             : 
    2306             : /* x and y in Z[X], return lift(gcd(x mod p, y mod p)). Set u and v st
    2307             :  * ux + vy = gcd (mod p) */
    2308             : GEN
    2309     6266068 : Flx_extgcd_pre(GEN x, GEN y, ulong p, ulong pi, GEN *ptu, GEN *ptv)
    2310             : {
    2311     6266068 :   pari_sp av = avma;
    2312             :   GEN d;
    2313     6266068 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2314     6266077 :   if (lgpol(y) >= lim)
    2315      146554 :     d = Flx_extgcd_halfgcd(x, y, p, pi, ptu, ptv);
    2316             :   else
    2317     6119517 :     d = Flx_extgcd_basecase(x, y, p, pi, ptu, ptv);
    2318     6266039 :   return gc_all(av, ptu?3:2, &d, ptv, ptu);
    2319             : }
    2320             : GEN
    2321      854706 : Flx_extgcd(GEN x, GEN y, ulong p, GEN *ptu, GEN *ptv)
    2322      854706 : { return Flx_extgcd_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p), ptu, ptv); }
    2323             : 
    2324             : static GEN
    2325        1044 : Flx_halfres_pre(GEN x, GEN y, ulong p, ulong pi, GEN *a, GEN *b, ulong *r)
    2326             : {
    2327             :   struct Flx_res res;
    2328             :   GEN R;
    2329             :   long dB;
    2330             : 
    2331        1044 :   res.res  = *r;
    2332        1044 :   res.lc   = Flx_lead(y);
    2333        1044 :   res.deg0 = degpol(x);
    2334        1044 :   res.deg1 = degpol(y);
    2335        1044 :   res.off = 0;
    2336        1044 :   R = Flx_halfres_i(x, y, p, pi, a, b, &res);
    2337        1044 :   dB = degpol(*b);
    2338        1044 :   if (dB < degpol(y))
    2339        1044 :     Flx_halfres_update_pre(res.deg0, res.deg1, dB, p, pi, &res);
    2340        1044 :   *r = res.res;
    2341        1044 :   return R;
    2342             : }
    2343             : 
    2344             : static ulong
    2345    10269486 : Flx_resultant_basecase_pre(GEN a, GEN b, ulong p, ulong pi)
    2346             : {
    2347             :   pari_sp av;
    2348             :   long da,db,dc;
    2349    10269486 :   ulong lb, res = 1UL;
    2350             :   GEN c;
    2351             : 
    2352    10269486 :   da = degpol(a);
    2353    10269352 :   db = degpol(b);
    2354    10269428 :   if (db > da)
    2355             :   {
    2356           0 :     swapspec(a,b, da,db);
    2357           0 :     if (both_odd(da,db)) res = p-res;
    2358             :   }
    2359    10269428 :   else if (!da) return 1; /* = res * a[2] ^ db, since 0 <= db <= da = 0 */
    2360    10269428 :   av = avma;
    2361   107297621 :   while (db)
    2362             :   {
    2363    97050064 :     lb = b[db+2];
    2364    97050064 :     c = Flx_rem_pre(a,b, p,pi);
    2365    96727929 :     a = b; b = c; dc = degpol(c);
    2366    96691278 :     if (dc < 0) return gc_long(av,0);
    2367             : 
    2368    96685800 :     if (both_odd(da,db)) res = p - res;
    2369    96674563 :     if (lb != 1) res = Fl_mul(res, Fl_powu_pre(lb, da - dc, p, pi), p);
    2370    97040526 :     if (gc_needed(av,2))
    2371             :     {
    2372           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_resultant (da = %ld)",da);
    2373           0 :       (void)gc_all(av,2, &a,&b);
    2374             :     }
    2375    97028193 :     da = db; /* = degpol(a) */
    2376    97028193 :     db = dc; /* = degpol(b) */
    2377             :   }
    2378    10247557 :   return gc_ulong(av, Fl_mul(res, Fl_powu_pre(b[2], da, p, pi), p));
    2379             : }
    2380             : 
    2381             : ulong
    2382    10271541 : Flx_resultant_pre(GEN x, GEN y, ulong p, ulong pi)
    2383             : {
    2384    10271541 :   pari_sp av = avma;
    2385             :   long lim;
    2386    10271541 :   ulong res = 1;
    2387    10271541 :   long dx = degpol(x), dy = degpol(y);
    2388    10271044 :   if (dx < 0 || dy < 0) return 0;
    2389    10269602 :   if (dx < dy)
    2390             :   {
    2391     1065639 :     swap(x,y);
    2392     1065639 :     if (both_odd(dx, dy))
    2393        1906 :       res = Fl_neg(res, p);
    2394             :   }
    2395    10269602 :   lim = get_Fl_threshold(p, Flx_GCD_LIMIT, Flx_GCD2_LIMIT);
    2396    10270462 :   while (lgpol(y) >= lim)
    2397             :   {
    2398         852 :     if (lgpol(y)<=(lgpol(x)>>1))
    2399             :     {
    2400           0 :       GEN r = Flx_rem_pre(x, y, p, pi);
    2401           0 :       long dx = degpol(x), dy = degpol(y), dr = degpol(r);
    2402           0 :       ulong ly = y[dy+2];
    2403           0 :       if (ly != 1) res = Fl_mul(res, Fl_powu_pre(ly, dx - dr, p, pi), p);
    2404           0 :       if (both_odd(dx, dy))
    2405           0 :         res = Fl_neg(res, p);
    2406           0 :       x = y; y = r;
    2407             :     }
    2408         852 :     (void) Flx_halfres_pre(x, y, p, pi, &x, &y, &res);
    2409         852 :     if (gc_needed(av,2))
    2410             :     {
    2411           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flx_res (y = %ld)",degpol(y));
    2412           0 :       (void)gc_all(av,2,&x,&y);
    2413             :     }
    2414             :   }
    2415    10269517 :   return gc_ulong(av, Fl_mul(res, Flx_resultant_basecase_pre(x, y, p, pi), p));
    2416             : }
    2417             : 
    2418             : ulong
    2419     4732842 : Flx_resultant(GEN a, GEN b, ulong p)
    2420     4732842 : { return Flx_resultant_pre(a, b, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2421             : 
    2422             : /* If resultant is 0, *ptU and *ptV are not set */
    2423             : static ulong
    2424          53 : Flx_extresultant_basecase(GEN a, GEN b, ulong p, ulong pi, GEN *ptU, GEN *ptV)
    2425             : {
    2426          53 :   GEN z,q,u,v, x = a, y = b;
    2427          53 :   ulong lb, res = 1UL;
    2428          53 :   pari_sp av = avma;
    2429             :   long dx, dy, dz;
    2430          53 :   long vs = a[1];
    2431             : 
    2432          53 :   u = pol0_Flx(vs);
    2433          53 :   v = pol1_Flx(vs); /* v = 1 */
    2434          53 :   dx = degpol(x);
    2435          53 :   dy = degpol(y);
    2436         764 :   while (dy)
    2437             :   { /* b u = x (a), b v = y (a) */
    2438         711 :     lb = y[dy+2];
    2439         711 :     q = Flx_divrem_pre(x,y, p, pi, &z);
    2440         711 :     x = y; y = z; /* (x,y) = (y, x - q y) */
    2441         711 :     dz = degpol(z); if (dz < 0) return gc_ulong(av,0);
    2442         711 :     z = Flx_sub(u, Flx_mul_pre(q,v, p, pi), p);
    2443         711 :     u = v; v = z; /* (u,v) = (v, u - q v) */
    2444             : 
    2445         711 :     if (both_odd(dx,dy)) res = p - res;
    2446         711 :     if (lb != 1) res = Fl_mul(res, Fl_powu_pre(lb, dx-dz, p, pi), p);
    2447         711 :     dx = dy; /* = degpol(x) */
    2448         711 :     dy = dz; /* = degpol(y) */
    2449             :   }
    2450          53 :   res = Fl_mul(res, Fl_powu_pre(y[2], dx, p, pi), p);
    2451          53 :   lb = Fl_mul(res, Fl_inv(y[2],p), p);
    2452          53 :   v = gc_uptoleaf(av, Flx_Fl_mul_pre(v, lb, p, pi));
    2453          53 :   av = avma;
    2454          53 :   u = Flx_sub(Fl_to_Flx(res,vs), Flx_mul_pre(b,v,p,pi), p);
    2455          53 :   u = gc_uptoleaf(av, Flx_div_pre(u,a,p,pi)); /* = (res - b v) / a */
    2456          53 :   *ptU = u;
    2457          53 :   *ptV = v; return res;
    2458             : }
    2459             : 
    2460             : ulong
    2461          53 : Flx_extresultant_pre(GEN x, GEN y, ulong p, ulong pi, GEN *ptU, GEN *ptV)
    2462             : {
    2463          53 :   pari_sp av=avma;
    2464             :   GEN u, v, R;
    2465          53 :   long lim = get_Fl_threshold(p, Flx_EXTGCD_LIMIT, Flx_EXTGCD2_LIMIT);
    2466          53 :   ulong res = 1, res1;
    2467          53 :   long dx = degpol(x), dy = degpol(y);
    2468          53 :   if (dy > dx)
    2469             :   {
    2470          13 :     swap(x,y); lswap(dx,dy);
    2471          13 :     if (both_odd(dx,dy)) res = p-res;
    2472          13 :     R = matJ2_FlxM(x[1]);
    2473          40 :   } else R = matid2_FlxM(x[1]);
    2474          53 :   if (dy < 0) return 0;
    2475         245 :   while (lgpol(y) >= lim)
    2476             :   {
    2477             :     GEN M;
    2478         192 :     if (lgpol(y)<=(lgpol(x)>>1))
    2479             :     {
    2480          20 :       GEN r, q = Flx_divrem_pre(x, y, p, pi, &r);
    2481          20 :       long dx = degpol(x), dy = degpol(y), dr = degpol(r);
    2482          20 :       ulong ly = y[dy+2];
    2483          20 :       if (ly != 1) res = Fl_mul(res, Fl_powu_pre(ly, dx - dr, p, pi), p);
    2484          20 :       if (both_odd(dx, dy))
    2485           0 :         res = Fl_neg(res, p);
    2486          20 :       x = y; y = r;
    2487          20 :       R = Flx_FlxM_qmul(q, R, p,pi);
    2488             :     }
    2489         192 :     M = Flx_halfres_pre(x, y, p, pi, &x, &y, &res);
    2490         192 :     if (!res) return gc_ulong(av, 0);
    2491         192 :     R = FlxM_mul2(M, R, p, pi);
    2492         192 :     (void)gc_all(av,3,&x,&y,&R);
    2493             :   }
    2494          53 :   res1 = Flx_extresultant_basecase(x,y,p,pi,&u,&v);
    2495          53 :   if (!res1) return gc_ulong(av, 0);
    2496          53 :   *ptU = Flx_Fl_mul_pre(Flx_addmulmul(u, v, gcoeff(R,1,1), gcoeff(R,2,1), p, pi), res, p, pi);
    2497          53 :   *ptV = Flx_Fl_mul_pre(Flx_addmulmul(u, v, gcoeff(R,1,2), gcoeff(R,2,2), p, pi), res, p, pi);
    2498          53 :   (void)gc_all(av, 2, ptU, ptV);
    2499          53 :   return Fl_mul(res1,res,p);
    2500             : }
    2501             : 
    2502             : ulong
    2503          53 : Flx_extresultant(GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV)
    2504          53 : { return Flx_extresultant_pre(a, b, p, SMALL_ULONG(p)? 0: get_Fl_red(p), ptU, ptV); }
    2505             : 
    2506             : /* allow pi = 0 (SMALL_ULONG) */
    2507             : ulong
    2508    43586255 : Flx_eval_powers_pre(GEN x, GEN y, ulong p, ulong pi)
    2509             : {
    2510    43586255 :   ulong l0, l1, h0, h1, v1,  i = 1, lx = lg(x)-1;
    2511             : 
    2512    43586255 :   if (lx == 1) return 0;
    2513    40799149 :   x++;
    2514    40799149 :   if (pi)
    2515             :   {
    2516             :     LOCAL_OVERFLOW;
    2517             :     LOCAL_HIREMAINDER;
    2518    40734630 :     l1 = mulll(uel(x,i), uel(y,i)); h1 = hiremainder; v1 = 0;
    2519    97131111 :     while (++i < lx)
    2520             :     {
    2521    56396481 :       l0 = mulll(uel(x,i), uel(y,i)); h0 = hiremainder;
    2522    56396481 :       l1 = addll(l0, l1); h1 = addllx(h0, h1); v1 += overflow;
    2523             :     }
    2524       81118 :     return v1? remlll_pre(v1, h1, l1, p, pi)
    2525    40815748 :              : remll_pre(h1, l1, p, pi);
    2526             :   }
    2527             :   else
    2528             :   {
    2529       64519 :     l1 = x[i] * y[i];
    2530    30931333 :     while (++i < lx) { l1 += x[i] * y[i]; if (l1 & HIGHBIT) l1 %= p; }
    2531       64519 :     return l1 % p;
    2532             :   }
    2533             : }
    2534             : 
    2535             : /* allow pi = 0 (SMALL_ULONG) */
    2536             : ulong
    2537   100681458 : Flx_eval_pre(GEN x, ulong y, ulong p, ulong pi)
    2538             : {
    2539   100681458 :   long i, n = degpol(x);
    2540             :   ulong t;
    2541   100678910 :   if (n <= 0) return n? 0: x[2];
    2542    32945844 :   if (n > 15)
    2543             :   {
    2544      180167 :     pari_sp av = avma;
    2545      180167 :     GEN v = Fl_powers_pre(y, n, p, pi);
    2546      180163 :     return gc_ulong(av, Flx_eval_powers_pre(x, v, p, pi));
    2547             :   }
    2548    32765677 :   i = n+2; t = x[i];
    2549    32765677 :   if (pi)
    2550             :   {
    2551   123217958 :     for (i--; i>=2; i--) t = Fl_addmul_pre(uel(x, i), t, y, p, pi);
    2552    31664515 :     return t;
    2553             :   }
    2554     2678773 :   for (i--; i>=2; i--) t = (t * y + x[i]) % p;
    2555     1119367 :   return t %= p;
    2556             : }
    2557             : ulong
    2558    20394994 : Flx_eval(GEN x, ulong y, ulong p)
    2559    20394994 : { return Flx_eval_pre(x, y, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2560             : 
    2561             : ulong
    2562        3594 : Flv_prod_pre(GEN x, ulong p, ulong pi)
    2563             : {
    2564        3594 :   pari_sp ltop = avma;
    2565             :   GEN v;
    2566        3594 :   long i,k,lx = lg(x);
    2567        3594 :   if (lx == 1) return 1UL;
    2568        3594 :   if (lx == 2) return uel(x,1);
    2569        3153 :   v = cgetg(1+(lx << 1), t_VECSMALL);
    2570        3153 :   k = 1;
    2571       28537 :   for (i=1; i<lx-1; i+=2)
    2572       25384 :     uel(v,k++) = Fl_mul_pre(uel(x,i), uel(x,i+1), p, pi);
    2573        3153 :   if (i < lx) uel(v,k++) = uel(x,i);
    2574       13499 :   while (k > 2)
    2575             :   {
    2576       10346 :     lx = k; k = 1;
    2577       35730 :     for (i=1; i<lx-1; i+=2)
    2578       25384 :       uel(v,k++) = Fl_mul_pre(uel(v,i), uel(v,i+1), p, pi);
    2579       10346 :     if (i < lx) uel(v,k++) = uel(v,i);
    2580             :   }
    2581        3153 :   return gc_ulong(ltop, uel(v,1));
    2582             : }
    2583             : 
    2584             : ulong
    2585           0 : Flv_prod(GEN v, ulong p)
    2586             : {
    2587           0 :   return Flv_prod_pre(v, p, get_Fl_red(p));
    2588             : }
    2589             : 
    2590             : GEN
    2591           0 : FlxV_prod(GEN V, ulong p)
    2592             : {
    2593             :   struct _Flxq D;
    2594           0 :   D.T = NULL; D.aut = NULL; D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2595           0 :   return gen_product(V, (void *)&D, &_Flx_mul);
    2596             : }
    2597             : 
    2598             : /* compute prod (x - a[i]) */
    2599             : GEN
    2600      740996 : Flv_roots_to_pol(GEN a, ulong p, long vs)
    2601             : {
    2602             :   struct _Flxq D;
    2603      740996 :   long i,k,lx = lg(a);
    2604             :   GEN p1;
    2605      740996 :   if (lx == 1) return pol1_Flx(vs);
    2606      740996 :   p1 = cgetg(lx, t_VEC);
    2607    11896240 :   for (k=1,i=1; i<lx-1; i+=2)
    2608    11153731 :     gel(p1,k++) = mkvecsmall4(vs, Fl_mul(a[i], a[i+1], p),
    2609    11155468 :                               Fl_neg(Fl_add(a[i],a[i+1],p),p), 1);
    2610      740772 :   if (i < lx)
    2611       59340 :     gel(p1,k++) = mkvecsmall3(vs, Fl_neg(a[i],p), 1);
    2612      740761 :   D.T = NULL; D.aut = NULL; D.p = p; D.pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2613      740759 :   setlg(p1, k); return gen_product(p1, (void *)&D, _Flx_mul);
    2614             : }
    2615             : 
    2616             : /* set v[i] = w[i]^{-1}; may be called with w = v, suitable for "large" p */
    2617             : INLINE void
    2618    19039322 : Flv_inv_pre_indir(GEN w, GEN v, ulong p, ulong pi)
    2619             : {
    2620    19039322 :   pari_sp av = avma;
    2621    19039322 :   long n = lg(w), i;
    2622             :   ulong u;
    2623             :   GEN c;
    2624             : 
    2625    19039322 :   if (n == 1) return;
    2626    19039322 :   c = cgetg(n, t_VECSMALL); c[1] = w[1];
    2627    79645502 :   for (i = 2; i < n; ++i) c[i] = Fl_mul_pre(w[i], c[i-1], p, pi);
    2628    19236829 :   i = n-1; u = Fl_inv(c[i], p);
    2629    80056877 :   for ( ; i > 1; --i)
    2630             :   {
    2631    60755608 :     ulong t = Fl_mul_pre(u, c[i-1], p, pi);
    2632    60710260 :     u = Fl_mul_pre(u, w[i], p, pi); v[i] = t;
    2633             :   }
    2634    19301269 :   v[1] = u; set_avma(av);
    2635             : }
    2636             : 
    2637             : void
    2638    18429957 : Flv_inv_pre_inplace(GEN v, ulong p, ulong pi) { Flv_inv_pre_indir(v,v, p, pi); }
    2639             : 
    2640             : GEN
    2641       10582 : Flv_inv_pre(GEN w, ulong p, ulong pi)
    2642       10582 : { GEN v = cgetg(lg(w), t_VECSMALL); Flv_inv_pre_indir(w, v, p, pi); return v; }
    2643             : 
    2644             : /* set v[i] = w[i]^{-1}; may be called with w = v, suitable for SMALL_ULONG p */
    2645             : INLINE void
    2646       49886 : Flv_inv_indir(GEN w, GEN v, ulong p)
    2647             : {
    2648       49886 :   pari_sp av = avma;
    2649       49886 :   long n = lg(w), i;
    2650             :   ulong u;
    2651             :   GEN c;
    2652             : 
    2653       49886 :   if (n == 1) return;
    2654       49886 :   c = cgetg(n, t_VECSMALL); c[1] = w[1];
    2655     1721590 :   for (i = 2; i < n; ++i) c[i] = Fl_mul(w[i], c[i-1], p);
    2656       49923 :   i = n-1; u = Fl_inv(c[i], p);
    2657     1721646 :   for ( ; i > 1; --i)
    2658             :   {
    2659     1671758 :     ulong t = Fl_mul(u, c[i-1], p);
    2660     1671756 :     u = Fl_mul(u, w[i], p); v[i] = t;
    2661             :   }
    2662       49888 :   v[1] = u; set_avma(av);
    2663             : }
    2664             : static void
    2665      636176 : Flv_inv_i(GEN v, GEN w, ulong p)
    2666             : {
    2667      636176 :   if (SMALL_ULONG(p)) Flv_inv_indir(w, v, p);
    2668      586290 :   else Flv_inv_pre_indir(w, v, p, get_Fl_red(p));
    2669      636185 : }
    2670             : void
    2671       12017 : Flv_inv_inplace(GEN v, ulong p) { Flv_inv_i(v, v, p); }
    2672             : GEN
    2673      624163 : Flv_inv(GEN w, ulong p)
    2674      624163 : { GEN v = cgetg(lg(w), t_VECSMALL); Flv_inv_i(v, w, p); return v; }
    2675             : 
    2676             : GEN
    2677    33014214 : Flx_div_by_X_x(GEN a, ulong x, ulong p, ulong *rem)
    2678             : {
    2679    33014214 :   long l = lg(a), i;
    2680             :   GEN a0, z0, z;
    2681    33014214 :   if (l <= 3)
    2682             :   {
    2683           0 :     if (rem) *rem = l == 2? 0: a[2];
    2684           0 :     return zero_Flx(a[1]);
    2685             :   }
    2686    33014214 :   z = cgetg(l-1,t_VECSMALL); z[1] = a[1];
    2687    32862784 :   a0 = a + l-1;
    2688    32862784 :   z0 = z + l-2; *z0 = *a0--;
    2689    32862784 :   if (SMALL_ULONG(p))
    2690             :   {
    2691    79671619 :     for (i=l-3; i>1; i--) /* z[i] = (a[i+1] + x*z[i+1]) % p */
    2692             :     {
    2693    59035356 :       ulong t = (*a0-- + x *  *z0--) % p;
    2694    59035356 :       *z0 = (long)t;
    2695             :     }
    2696    20636263 :     if (rem) *rem = (*a0 + x *  *z0) % p;
    2697             :   }
    2698             :   else
    2699             :   {
    2700    48252576 :     for (i=l-3; i>1; i--)
    2701             :     {
    2702    35997517 :       ulong t = Fl_add((ulong)*a0--, Fl_mul(x, *z0--, p), p);
    2703    36026055 :       *z0 = (long)t;
    2704             :     }
    2705    12255059 :     if (rem) *rem = Fl_add((ulong)*a0, Fl_mul(x, *z0, p), p);
    2706             :   }
    2707    32886227 :   return z;
    2708             : }
    2709             : 
    2710             : /* xa, ya = t_VECSMALL */
    2711             : static GEN
    2712      625365 : Flv_producttree(GEN xa, GEN s, ulong p, ulong pi, long vs)
    2713             : {
    2714      625365 :   long n = lg(xa)-1;
    2715      625365 :   long m = n==1 ? 1: expu(n-1)+1;
    2716      625365 :   long i, j, k, ls = lg(s);
    2717      625365 :   GEN T = cgetg(m+1, t_VEC);
    2718      625357 :   GEN t = cgetg(ls, t_VEC);
    2719     7837351 :   for (j=1, k=1; j<ls; k+=s[j++])
    2720     7211857 :     gel(t, j) = s[j] == 1 ?
    2721     7211990 :              mkvecsmall3(vs, Fl_neg(xa[k], p), 1):
    2722     1517127 :              mkvecsmall4(vs, Fl_mul(xa[k], xa[k+1], p),
    2723     1517129 :                  Fl_neg(Fl_add(xa[k],xa[k+1],p),p), 1);
    2724      625361 :   gel(T,1) = t;
    2725     2357846 :   for (i=2; i<=m; i++)
    2726             :   {
    2727     1732508 :     GEN u = gel(T, i-1);
    2728     1732508 :     long n = lg(u)-1;
    2729     1732508 :     GEN t = cgetg(((n+1)>>1)+1, t_VEC);
    2730     8318395 :     for (j=1, k=1; k<n; j++, k+=2)
    2731     6585910 :       gel(t, j) = Flx_mul_pre(gel(u, k), gel(u, k+1), p, pi);
    2732     1732485 :     gel(T, i) = t;
    2733             :   }
    2734      625338 :   return T;
    2735             : }
    2736             : 
    2737             : static GEN
    2738      665670 : Flx_Flv_multieval_tree(GEN P, GEN xa, GEN T, ulong p, ulong pi)
    2739             : {
    2740             :   long i,j,k;
    2741      665670 :   long m = lg(T)-1;
    2742      665670 :   GEN R = cgetg(lg(xa), t_VECSMALL);
    2743      665668 :   GEN Tp = cgetg(m+1, t_VEC), t;
    2744      665664 :   gel(Tp, m) = mkvec(P);
    2745     2583517 :   for (i=m-1; i>=1; i--)
    2746             :   {
    2747     1917855 :     GEN u = gel(T, i), v = gel(Tp, i+1);
    2748     1917855 :     long n = lg(u)-1;
    2749     1917855 :     t = cgetg(n+1, t_VEC);
    2750     9534817 :     for (j=1, k=1; k<n; j++, k+=2)
    2751             :     {
    2752     7616973 :       gel(t, k)   = Flx_rem_pre(gel(v, j), gel(u, k), p, pi);
    2753     7617064 :       gel(t, k+1) = Flx_rem_pre(gel(v, j), gel(u, k+1), p, pi);
    2754             :     }
    2755     1917844 :     gel(Tp, i) = t;
    2756             :   }
    2757             :   {
    2758      665662 :     GEN u = gel(T, i+1), v = gel(Tp, i+1);
    2759      665662 :     long n = lg(u)-1;
    2760     8950246 :     for (j=1, k=1; j<=n; j++)
    2761             :     {
    2762     8284534 :       long c, d = degpol(gel(u,j));
    2763    18335420 :       for (c=1; c<=d; c++, k++) R[k] = Flx_eval_pre(gel(v, j), xa[k], p, pi);
    2764             :     }
    2765      665712 :     return gc_const((pari_sp)R, R);
    2766             :   }
    2767             : }
    2768             : 
    2769             : static GEN
    2770     1386170 : FlvV_polint_tree(GEN T, GEN R, GEN s, GEN xa, GEN ya, ulong p, ulong pi, long vs)
    2771             : {
    2772     1386170 :   pari_sp av = avma;
    2773     1386170 :   long m = lg(T)-1;
    2774     1386170 :   long i, j, k, ls = lg(s);
    2775     1386170 :   GEN Tp = cgetg(m+1, t_VEC);
    2776     1385869 :   GEN t = cgetg(ls, t_VEC);
    2777    24927529 :   for (j=1, k=1; j<ls; k+=s[j++])
    2778    23541816 :     if (s[j]==2)
    2779             :     {
    2780     6912272 :       ulong a = Fl_mul(ya[k], R[k], p);
    2781     6911913 :       ulong b = Fl_mul(ya[k+1], R[k+1], p);
    2782     6917704 :       gel(t, j) = mkvecsmall3(vs, Fl_neg(Fl_add(Fl_mul(xa[k], b, p ),
    2783     6911800 :                   Fl_mul(xa[k+1], a, p), p), p), Fl_add(a, b, p));
    2784     6915488 :       gel(t, j) = Flx_renormalize(gel(t, j), 4);
    2785             :     }
    2786             :     else
    2787    16629544 :       gel(t, j) = Fl_to_Flx(Fl_mul(ya[k], R[k], p), vs);
    2788     1385713 :   gel(Tp, 1) = t;
    2789     6387721 :   for (i=2; i<=m; i++)
    2790             :   {
    2791     5001946 :     GEN u = gel(T, i-1);
    2792     5001946 :     GEN t = cgetg(lg(gel(T,i)), t_VEC);
    2793     4999286 :     GEN v = gel(Tp, i-1);
    2794     4999286 :     long n = lg(v)-1;
    2795    27108698 :     for (j=1, k=1; k<n; j++, k+=2)
    2796    22094906 :       gel(t, j) = Flx_add(Flx_mul_pre(gel(u, k), gel(v, k+1), p, pi),
    2797    22106690 :                           Flx_mul_pre(gel(u, k+1), gel(v, k), p, pi), p);
    2798     5002008 :     gel(Tp, i) = t;
    2799             :   }
    2800     1385775 :   return gc_uptoleaf(av, gmael(Tp,m,1));
    2801             : }
    2802             : 
    2803             : GEN
    2804           0 : Flx_Flv_multieval(GEN P, GEN xa, ulong p)
    2805             : {
    2806           0 :   pari_sp av = avma;
    2807           0 :   GEN s = producttree_scheme(lg(xa)-1);
    2808           0 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2809           0 :   GEN T = Flv_producttree(xa, s, p, pi, P[1]);
    2810           0 :   return gc_uptoleaf(av, Flx_Flv_multieval_tree(P, xa, T, p, pi));
    2811             : }
    2812             : 
    2813             : static GEN
    2814        2471 : FlxV_Flv_multieval_tree(GEN x, GEN xa, GEN T, ulong p, ulong pi)
    2815       45248 : { pari_APPLY_same(Flx_Flv_multieval_tree(gel(x,i), xa, T, p, pi)) }
    2816             : 
    2817             : GEN
    2818        2471 : FlxV_Flv_multieval(GEN P, GEN xa, ulong p)
    2819             : {
    2820        2471 :   pari_sp av = avma;
    2821        2471 :   GEN s = producttree_scheme(lg(xa)-1);
    2822        2471 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2823        2471 :   GEN T = Flv_producttree(xa, s, p, pi, P[1]);
    2824        2471 :   return gc_upto(av, FlxV_Flv_multieval_tree(P, xa, T, p, pi));
    2825             : }
    2826             : 
    2827             : GEN
    2828      368427 : Flv_polint(GEN xa, GEN ya, ulong p, long vs)
    2829             : {
    2830      368427 :   pari_sp av = avma;
    2831      368427 :   GEN s = producttree_scheme(lg(xa)-1);
    2832      368439 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2833      368439 :   GEN T = Flv_producttree(xa, s, p, pi, vs);
    2834      368438 :   long m = lg(T)-1;
    2835      368438 :   GEN P = Flx_deriv(gmael(T, m, 1), p);
    2836      368437 :   GEN R = Flv_inv(Flx_Flv_multieval_tree(P, xa, T, p, pi), p);
    2837      368440 :   return gc_uptoleaf(av, FlvV_polint_tree(T, R, s, xa, ya, p, pi, vs));
    2838             : }
    2839             : 
    2840             : GEN
    2841      101294 : Flv_Flm_polint(GEN xa, GEN ya, ulong p, long vs)
    2842             : {
    2843      101294 :   pari_sp av = avma;
    2844      101294 :   GEN s = producttree_scheme(lg(xa)-1);
    2845      101293 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2846      101293 :   GEN T = Flv_producttree(xa, s, p, pi, vs);
    2847      101292 :   long i, m = lg(T)-1, l = lg(ya)-1;
    2848      101292 :   GEN P = Flx_deriv(gmael(T, m, 1), p);
    2849      101293 :   GEN R = Flv_inv(Flx_Flv_multieval_tree(P, xa, T, p, pi), p);
    2850      101293 :   GEN M = cgetg(l+1, t_VEC);
    2851     1118875 :   for (i=1; i<=l; i++)
    2852     1017583 :     gel(M,i) = FlvV_polint_tree(T, R, s, xa, gel(ya,i), p, pi, vs);
    2853      101292 :   return gc_upto(av, M);
    2854             : }
    2855             : 
    2856             : GEN
    2857      153162 : Flv_invVandermonde(GEN L, ulong den, ulong p)
    2858             : {
    2859      153162 :   pari_sp av = avma;
    2860      153162 :   long i, n = lg(L);
    2861             :   GEN M, R;
    2862      153162 :   GEN s = producttree_scheme(n-1);
    2863      153162 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    2864      153162 :   GEN tree = Flv_producttree(L, s, p, pi, 0);
    2865      153162 :   long m = lg(tree)-1;
    2866      153162 :   GEN T = gmael(tree, m, 1);
    2867      153162 :   R = Flv_inv(Flx_Flv_multieval_tree(Flx_deriv(T, p), L, tree, p, pi), p);
    2868      153162 :   if (den!=1) R = Flv_Fl_mul(R, den, p);
    2869      153162 :   M = cgetg(n, t_MAT);
    2870      601038 :   for (i = 1; i < n; i++)
    2871             :   {
    2872      447876 :     GEN P = Flx_Fl_mul(Flx_div_by_X_x(T, uel(L,i), p, NULL), uel(R,i), p);
    2873      447876 :     gel(M,i) = Flx_to_Flv(P, n-1);
    2874             :   }
    2875      153162 :   return gc_GEN(av, M);
    2876             : }
    2877             : 
    2878             : /***********************************************************************/
    2879             : /**                               Flxq                                **/
    2880             : /***********************************************************************/
    2881             : /* Flxq objects are Flx modulo another Flx called q. */
    2882             : 
    2883             : /* Product of y and x in Z/pZ[X]/(T), as t_VECSMALL. */
    2884             : GEN
    2885   188143865 : Flxq_mul_pre(GEN x,GEN y,GEN T,ulong p,ulong pi)
    2886   188143865 : { return Flx_rem_pre(Flx_mul_pre(x,y,p,pi),T,p,pi); }
    2887             : GEN
    2888    13190415 : Flxq_mul(GEN x,GEN y,GEN T,ulong p)
    2889    13190415 : { return Flxq_mul_pre(x,y,T,p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2890             : 
    2891             : GEN
    2892   276055637 : Flxq_sqr_pre(GEN x,GEN T,ulong p,ulong pi)
    2893   276055637 : { return Flx_rem_pre(Flx_sqr_pre(x, p,pi), T, p,pi); }
    2894             : /* Square of y in Z/pZ[X]/(T), as t_VECSMALL. */
    2895             : GEN
    2896     2759495 : Flxq_sqr(GEN x,GEN T,ulong p)
    2897     2759495 : { return Flxq_sqr_pre(x,T,p,SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2898             : 
    2899             : static GEN
    2900     1550928 : _Flxq_red(void *E, GEN x)
    2901     1550928 : { struct _Flxq *s = (struct _Flxq *)E;
    2902     1550928 :   return Flx_rem_pre(x, s->T, s->p, s->pi); }
    2903             : #if 0
    2904             : static GEN
    2905             : _Flx_sub(void *E, GEN x, GEN y)
    2906             : { struct _Flxq *s = (struct _Flxq *)E;
    2907             :   return Flx_sub(x,y,s->p); }
    2908             : #endif
    2909             : static GEN
    2910   268222611 : _Flxq_sqr(void *data, GEN x)
    2911             : {
    2912   268222611 :   struct _Flxq *D = (struct _Flxq*)data;
    2913   268222611 :   return Flxq_sqr_pre(x, D->T, D->p, D->pi);
    2914             : }
    2915             : static GEN
    2916   147117593 : _Flxq_mul(void *data, GEN x, GEN y)
    2917             : {
    2918   147117593 :   struct _Flxq *D = (struct _Flxq*)data;
    2919   147117593 :   return Flxq_mul_pre(x,y, D->T, D->p, D->pi);
    2920             : }
    2921             : static GEN
    2922    22206805 : _Flxq_one(void *data)
    2923             : {
    2924    22206805 :   struct _Flxq *D = (struct _Flxq*)data;
    2925    22206805 :   return pol1_Flx(get_Flx_var(D->T));
    2926             : }
    2927             : 
    2928             : static GEN
    2929    22888900 : _Flxq_powu_i(struct _Flxq *D, GEN x, ulong n)
    2930    22888900 : { return gen_powu_i(x, n, (void*)D, &_Flxq_sqr, &_Flxq_mul); }
    2931             : static GEN
    2932          68 : _Flxq_powu(struct _Flxq *D, GEN x, ulong n)
    2933          68 : { pari_sp av = avma; return gc_uptoleaf(av, _Flxq_powu_i(D, x, n)); }
    2934             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL. */
    2935             : GEN
    2936    24139581 : Flxq_powu_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    2937             : {
    2938             :   pari_sp av;
    2939             :   struct _Flxq D;
    2940    24139581 :   switch(n)
    2941             :   {
    2942           0 :     case 0: return pol1_Flx(get_Flx_var(T));
    2943      278210 :     case 1: return Flx_copy(x);
    2944      971973 :     case 2: return Flxq_sqr_pre(x, T, p, pi);
    2945             :   }
    2946    22889398 :   av = avma; set_Flxq_pre(&D, T, p, pi);
    2947    22888708 :   return gc_uptoleaf(av, _Flxq_powu_i(&D, x, n));
    2948             : }
    2949             : GEN
    2950      488314 : Flxq_powu(GEN x, ulong n, GEN T, ulong p)
    2951      488314 : { return Flxq_powu_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2952             : 
    2953             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL. */
    2954             : GEN
    2955    23412281 : Flxq_pow_pre(GEN x, GEN n, GEN T, ulong p, ulong pi)
    2956             : {
    2957    23412281 :   pari_sp av = avma;
    2958             :   struct _Flxq D;
    2959             :   GEN y;
    2960    23412281 :   long s = signe(n);
    2961    23412281 :   if (!s) return pol1_Flx(get_Flx_var(T));
    2962    23335650 :   if (s < 0) x = Flxq_inv_pre(x,T,p,pi);
    2963    23335650 :   if (is_pm1(n)) return s < 0 ? x : Flx_copy(x);
    2964    22815971 :   set_Flxq_pre(&D, T, p, pi);
    2965    22816002 :   y = gen_pow_i(x, n, (void*)&D, &_Flxq_sqr, &_Flxq_mul);
    2966    22815904 :   return gc_uptoleaf(av, y);
    2967             : }
    2968             : GEN
    2969      930670 : Flxq_pow(GEN x, GEN n, GEN T, ulong p)
    2970      930670 : { return Flxq_pow_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2971             : 
    2972             : GEN
    2973          28 : Flxq_pow_init_pre(GEN x, GEN n, long k, GEN T, ulong p, ulong pi)
    2974             : {
    2975          28 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    2976          28 :   return gen_pow_init(x, n, k, (void*)&D, &_Flxq_sqr, &_Flxq_mul);
    2977             : }
    2978             : GEN
    2979           0 : Flxq_pow_init(GEN x, GEN n, long k, GEN T, ulong p)
    2980           0 : { return Flxq_pow_init_pre(x, n, k, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2981             : 
    2982             : GEN
    2983        4393 : Flxq_pow_table_pre(GEN R, GEN n, GEN T, ulong p, ulong pi)
    2984             : {
    2985        4393 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    2986        4393 :   return gen_pow_table(R, n, (void*)&D, &_Flxq_one, &_Flxq_mul);
    2987             : }
    2988             : GEN
    2989           0 : Flxq_pow_table(GEN R, GEN n, GEN T, ulong p)
    2990           0 : { return Flxq_pow_table_pre(R, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    2991             : 
    2992             : /* Inverse of x in Z/lZ[X]/(T) or NULL if inverse doesn't exist
    2993             :  * not stack clean. */
    2994             : GEN
    2995     5411390 : Flxq_invsafe_pre(GEN x, GEN T, ulong p, ulong pi)
    2996             : {
    2997     5411390 :   GEN V, z = Flx_extgcd_pre(get_Flx_mod(T), x, p, pi, NULL, &V);
    2998             :   ulong iz;
    2999     5411496 :   if (degpol(z)) return NULL;
    3000     5410836 :   iz = Fl_inv(uel(z,2), p);
    3001     5410847 :   return Flx_Fl_mul_pre(V, iz, p, pi);
    3002             : }
    3003             : GEN
    3004      669473 : Flxq_invsafe(GEN x, GEN T, ulong p)
    3005      669473 : { return Flxq_invsafe_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3006             : 
    3007             : GEN
    3008     4283899 : Flxq_inv_pre(GEN x, GEN T, ulong p, ulong pi)
    3009             : {
    3010     4283899 :   pari_sp av=avma;
    3011     4283899 :   GEN U = Flxq_invsafe_pre(x, T, p, pi);
    3012     4283902 :   if (!U) pari_err_INV("Flxq_inv",Flx_to_ZX(x));
    3013     4283895 :   return gc_uptoleaf(av, U);
    3014             : }
    3015             : GEN
    3016      335768 : Flxq_inv(GEN x, GEN T, ulong p)
    3017      335768 : { return Flxq_inv_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3018             : 
    3019             : GEN
    3020     2417569 : Flxq_div_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
    3021             : {
    3022     2417569 :   pari_sp av = avma;
    3023     2417569 :   return gc_uptoleaf(av, Flxq_mul_pre(x,Flxq_inv_pre(y,T,p,pi),T,p,pi));
    3024             : }
    3025             : GEN
    3026      237864 : Flxq_div(GEN x, GEN y, GEN T, ulong p)
    3027      237864 : { return Flxq_div_pre(x, y, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3028             : 
    3029             : GEN
    3030    22206733 : Flxq_powers_pre(GEN x, long l, GEN T, ulong p, ulong pi)
    3031             : {
    3032    22206733 :   int use_sqr = 2*degpol(x) >= get_Flx_degree(T);
    3033    22204762 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3034    22202771 :   return gen_powers(x, l, use_sqr, (void*)&D, &_Flxq_sqr, &_Flxq_mul, &_Flxq_one);
    3035             : }
    3036             : GEN
    3037      232092 : Flxq_powers(GEN x, long l, GEN T, ulong p)
    3038      232092 : { return Flxq_powers_pre(x, l, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3039             : 
    3040             : GEN
    3041      170660 : Flxq_matrix_pow_pre(GEN y, long n, long m, GEN P, ulong l, ulong li)
    3042      170660 : { return FlxV_to_Flm(Flxq_powers_pre(y,m-1,P,l,li),n); }
    3043             : GEN
    3044         399 : Flxq_matrix_pow(GEN y, long n, long m, GEN P, ulong l)
    3045         399 : { return Flxq_matrix_pow_pre(y, n, m, P, l, SMALL_ULONG(l)? 0: get_Fl_red(l)); }
    3046             : 
    3047             : GEN
    3048    13702728 : Flx_Frobenius_pre(GEN T, ulong p, ulong pi)
    3049    13702728 : { return Flxq_powu_pre(polx_Flx(get_Flx_var(T)), p, T, p, pi); }
    3050             : GEN
    3051       86486 : Flx_Frobenius(GEN T, ulong p)
    3052       86486 : { return Flx_Frobenius_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3053             : 
    3054             : GEN
    3055       86570 : Flx_matFrobenius_pre(GEN T, ulong p, ulong pi)
    3056             : {
    3057       86570 :   long n = get_Flx_degree(T);
    3058       86570 :   return Flxq_matrix_pow_pre(Flx_Frobenius_pre(T, p, pi), n, n, T, p, pi);
    3059             : }
    3060             : GEN
    3061           0 : Flx_matFrobenius(GEN T, ulong p)
    3062           0 : { return Flx_matFrobenius_pre(T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3063             : 
    3064             : static GEN
    3065    12799873 : Flx_blocks_Flm(GEN P, long n, long m)
    3066             : {
    3067    12799873 :   GEN z = cgetg(m+1,t_MAT);
    3068    12799678 :   long i,j, k=2, l = lg(P);
    3069    36675339 :   for(i=1; i<=m; i++)
    3070             :   {
    3071    23879756 :     GEN zi = cgetg(n+1,t_VECSMALL);
    3072    23875661 :     gel(z,i) = zi;
    3073   110824178 :     for(j=1; j<=n; j++)
    3074    86948517 :       uel(zi, j) = k==l ? 0 : uel(P,k++);
    3075             :   }
    3076    12795583 :   return z;
    3077             : }
    3078             : 
    3079             : GEN
    3080      516911 : Flx_blocks(GEN P, long n, long m)
    3081             : {
    3082      516911 :   GEN z = cgetg(m+1,t_VEC);
    3083      516565 :   long i,j, k=2, l = lg(P);
    3084     1547848 :   for(i=1; i<=m; i++)
    3085             :   {
    3086     1031594 :     GEN zi = cgetg(n+2,t_VECSMALL);
    3087     1030700 :     zi[1] = P[1];
    3088     1030700 :     gel(z,i) = zi;
    3089     6469022 :     for(j=2; j<n+2; j++)
    3090     5438322 :       uel(zi, j) = k==l ? 0 : uel(P,k++);
    3091     1030700 :     zi = Flx_renormalize(zi, n+2);
    3092             :   }
    3093      516254 :   return z;
    3094             : }
    3095             : 
    3096             : static GEN
    3097    12800666 : FlxV_to_Flm_lg(GEN x, long m, long n)
    3098             : {
    3099             :   long i;
    3100    12800666 :   GEN y = cgetg(n+1, t_MAT);
    3101    60825227 :   for (i=1; i<=n; i++) gel(y,i) = Flx_to_Flv(gel(x,i), m);
    3102    12797855 :   return y;
    3103             : }
    3104             : 
    3105             : /* allow pi = 0 (SMALL_ULONG) */
    3106             : GEN
    3107    12999421 : Flx_FlxqV_eval_pre(GEN Q, GEN x, GEN T, ulong p, ulong pi)
    3108             : {
    3109    12999421 :   pari_sp btop, av = avma;
    3110    12999421 :   long sv = get_Flx_var(T), m = get_Flx_degree(T);
    3111    12999623 :   long i, l = lg(x)-1, lQ = lgpol(Q), n,  d;
    3112             :   GEN A, B, C, S, g;
    3113    13000504 :   if (lQ == 0) return pol0_Flx(sv);
    3114    12801584 :   if (lQ <= l)
    3115             :   {
    3116     6343721 :     n = l;
    3117     6343721 :     d = 1;
    3118             :   }
    3119             :   else
    3120             :   {
    3121     6457863 :     n = l-1;
    3122     6457863 :     d = (lQ+n-1)/n;
    3123             :   }
    3124    12801584 :   A = FlxV_to_Flm_lg(x, m, n);
    3125    12799799 :   B = Flx_blocks_Flm(Q, n, d);
    3126    12798813 :   C = gc_upto(av, Flm_mul(A, B, p));
    3127    12802036 :   g = gel(x, l);
    3128    12802036 :   if (pi && SMALL_ULONG(p)) pi = 0;
    3129    12802036 :   T = Flx_get_red_pre(T, p, pi);
    3130    12801638 :   btop = avma;
    3131    12801638 :   S = Flv_to_Flx(gel(C, d), sv);
    3132    23883970 :   for (i = d-1; i>0; i--)
    3133             :   {
    3134    11083604 :     S = Flx_add(Flxq_mul_pre(S, g, T, p, pi), Flv_to_Flx(gel(C,i), sv), p);
    3135    11083502 :     if (gc_needed(btop,1))
    3136           0 :       S = gc_uptoleaf(btop, S);
    3137             :   }
    3138    12800366 :   return gc_uptoleaf(av, S);
    3139             : }
    3140             : GEN
    3141        5082 : Flx_FlxqV_eval(GEN Q, GEN x, GEN T, ulong p)
    3142        5082 : { return Flx_FlxqV_eval_pre(Q, x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3143             : 
    3144             : /* allow pi = 0 (SMALL_ULONG) */
    3145             : GEN
    3146     2404015 : Flx_Flxq_eval_pre(GEN Q, GEN x, GEN T, ulong p, ulong pi)
    3147             : {
    3148     2404015 :   pari_sp av = avma;
    3149             :   GEN z, V;
    3150     2404015 :   long d = degpol(Q), rtd;
    3151     2404014 :   if (d < 0) return pol0_Flx(get_Flx_var(T));
    3152     2403923 :   rtd = (long) sqrt((double)d);
    3153     2403923 :   T = Flx_get_red_pre(T, p, pi);
    3154     2403941 :   V = Flxq_powers_pre(x, rtd, T, p, pi);
    3155     2403993 :   z = Flx_FlxqV_eval_pre(Q, V, T, p, pi);
    3156     2403951 :   return gc_upto(av, z);
    3157             : }
    3158             : GEN
    3159      789724 : Flx_Flxq_eval(GEN Q, GEN x, GEN T, ulong p)
    3160      789724 : { return Flx_Flxq_eval_pre(Q, x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3161             : 
    3162             : /* allow pi = 0 (SMALL_ULONG) */
    3163             : GEN
    3164           0 : FlxC_FlxqV_eval_pre(GEN x, GEN v, GEN T, ulong p, ulong pi)
    3165           0 : { pari_APPLY_type(t_COL, Flx_FlxqV_eval_pre(gel(x,i), v, T, p, pi)) }
    3166             : GEN
    3167           0 : FlxC_FlxqV_eval(GEN x, GEN v, GEN T, ulong p)
    3168           0 : { return FlxC_FlxqV_eval_pre(x, v, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3169             : 
    3170             : /* allow pi = 0 (SMALL_ULONG) */
    3171             : GEN
    3172           0 : FlxC_Flxq_eval_pre(GEN x, GEN F, GEN T, ulong p, ulong pi)
    3173             : {
    3174           0 :   long d = brent_kung_optpow(get_Flx_degree(T)-1,lg(x)-1,1);
    3175           0 :   GEN Fp = Flxq_powers_pre(F, d, T, p, pi);
    3176           0 :   return FlxC_FlxqV_eval_pre(x, Fp, T, p, pi);
    3177             : }
    3178             : GEN
    3179           0 : FlxC_Flxq_eval(GEN x, GEN F, GEN T, ulong p)
    3180           0 : { return FlxC_Flxq_eval_pre(x, F, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3181             : 
    3182             : #if 0
    3183             : static struct bb_algebra Flxq_algebra = { _Flxq_red, _Flx_add, _Flx_sub,
    3184             :               _Flxq_mul, _Flxq_sqr, _Flxq_one, _Flxq_zero};
    3185             : #endif
    3186             : 
    3187             : static GEN
    3188       46251 : Flxq_autpow_sqr(void *E, GEN x)
    3189             : {
    3190       46251 :   struct _Flxq *D = (struct _Flxq*)E;
    3191       46251 :   return Flx_Flxq_eval_pre(x, x, D->T, D->p, D->pi);
    3192             : }
    3193             : static GEN
    3194       20696 : Flxq_autpow_msqr(void *E, GEN x)
    3195             : {
    3196       20696 :   struct _Flxq *D = (struct _Flxq*)E;
    3197       20696 :   return Flx_FlxqV_eval_pre(Flxq_autpow_sqr(E, x), D->aut, D->T, D->p, D->pi);
    3198             : }
    3199             : 
    3200             : GEN
    3201       67490 : Flxq_autpow_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3202             : {
    3203       67490 :   pari_sp av = avma;
    3204             :   struct _Flxq D;
    3205             :   long d;
    3206       67490 :   if (n==0) return Flx_rem_pre(polx_Flx(x[1]), T, p, pi);
    3207       67483 :   if (n==1) return Flx_rem_pre(x, T, p, pi);
    3208       31379 :   set_Flxq_pre(&D, T, p, pi);
    3209       31379 :   d = brent_kung_optpow(get_Flx_degree(T), hammingl(n)-1, 1);
    3210       31379 :   D.aut = Flxq_powers_pre(x, d, T, p, D.pi);
    3211       31379 :   x = gen_powu_fold_i(x,n,(void*)&D,Flxq_autpow_sqr,Flxq_autpow_msqr);
    3212       31379 :   return gc_GEN(av, x);
    3213             : }
    3214             : GEN
    3215           7 : Flxq_autpow(GEN x, ulong n, GEN T, ulong p)
    3216           7 : { return Flxq_autpow_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3217             : 
    3218             : GEN
    3219        1667 : Flxq_autpowers(GEN x, ulong l, GEN T, ulong p)
    3220             : {
    3221        1667 :   long d, vT = get_Flx_var(T), dT = get_Flx_degree(T);
    3222             :   ulong i, pi;
    3223        1667 :   pari_sp av = avma;
    3224        1667 :   GEN xp, V = cgetg(l+2,t_VEC);
    3225        1667 :   gel(V,1) = polx_Flx(vT); if (l==0) return V;
    3226        1667 :   gel(V,2) = gcopy(x); if (l==1) return V;
    3227        1667 :   pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3228        1667 :   T = Flx_get_red_pre(T, p, pi);
    3229        1667 :   d = brent_kung_optpow(dT-1, l-1, 1);
    3230        1667 :   xp = Flxq_powers_pre(x, d, T, p, pi);
    3231        6998 :   for(i = 3; i < l+2; i++)
    3232        5331 :     gel(V,i) = Flx_FlxqV_eval_pre(gel(V,i-1), xp, T, p, pi);
    3233        1667 :   return gc_GEN(av, V);
    3234             : }
    3235             : 
    3236             : static GEN
    3237      112480 : Flxq_autsum_mul(void *E, GEN x, GEN y)
    3238             : {
    3239      112480 :   struct _Flxq *D = (struct _Flxq*)E;
    3240      112480 :   GEN T = D->T;
    3241      112480 :   ulong p = D->p, pi = D->pi;
    3242      112480 :   GEN phi1 = gel(x,1), a1 = gel(x,2);
    3243      112480 :   GEN phi2 = gel(y,1), a2 = gel(y,2);
    3244      112480 :   ulong d = brent_kung_optpow(maxss(degpol(phi1),degpol(a1)),2,1);
    3245      112480 :   GEN V2 = Flxq_powers_pre(phi2, d, T, p, pi);
    3246      112480 :   GEN phi3 = Flx_FlxqV_eval_pre(phi1, V2, T, p, pi);
    3247      112480 :   GEN aphi = Flx_FlxqV_eval_pre(a1, V2, T, p, pi);
    3248      112480 :   GEN a3 = Flxq_mul_pre(aphi, a2, T, p, pi);
    3249      112480 :   return mkvec2(phi3, a3);
    3250             : }
    3251             : static GEN
    3252      105116 : Flxq_autsum_sqr(void *E, GEN x)
    3253      105116 : { return Flxq_autsum_mul(E, x, x); }
    3254             : 
    3255             : static GEN
    3256       98770 : Flxq_autsum_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3257             : {
    3258       98770 :   pari_sp av = avma;
    3259       98770 :   struct _Flxq D; set_Flxq_pre(&D, T, p, pi);
    3260       98770 :   x = gen_powu_i(x,n,(void*)&D,Flxq_autsum_sqr,Flxq_autsum_mul);
    3261       98770 :   return gc_GEN(av, x);
    3262             : }
    3263             : GEN
    3264           0 : Flxq_autsum(GEN x, ulong n, GEN T, ulong p)
    3265           0 : { return Flxq_autsum_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3266             : 
    3267             : static GEN
    3268      763337 : Flxq_auttrace_mul(void *E, GEN x, GEN y)
    3269             : {
    3270      763337 :   struct _Flxq *D = (struct _Flxq*)E;
    3271      763337 :   GEN T = D->T;
    3272      763337 :   ulong p = D->p, pi = D->pi;
    3273      763337 :   GEN phi1 = gel(x,1), a1 = gel(x,2);
    3274      763337 :   GEN phi2 = gel(y,1), a2 = gel(y,2);
    3275      763337 :   ulong d = brent_kung_optpow(maxss(degpol(phi1),degpol(a1)),2,1);
    3276      763357 :   GEN V1 = Flxq_powers_pre(phi1, d, T, p, pi);
    3277      763321 :   GEN phi3 = Flx_FlxqV_eval_pre(phi2, V1, T, p, pi);
    3278      763337 :   GEN aphi = Flx_FlxqV_eval_pre(a2, V1, T, p, pi);
    3279      763347 :   GEN a3 = Flx_add(a1, aphi, p);
    3280      763347 :   return mkvec2(phi3, a3);
    3281             : }
    3282             : 
    3283             : static GEN
    3284      636050 : Flxq_auttrace_sqr(void *E, GEN x)
    3285      636050 : { return Flxq_auttrace_mul(E, x, x); }
    3286             : 
    3287             : GEN
    3288      935361 : Flxq_auttrace_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
    3289             : {
    3290      935361 :   pari_sp av = avma;
    3291             :   struct _Flxq D;
    3292      935361 :   set_Flxq_pre(&D, T, p, pi);
    3293      935358 :   x = gen_powu_i(x,n,(void*)&D,Flxq_auttrace_sqr,Flxq_auttrace_mul);
    3294      935347 :   return gc_GEN(av, x);
    3295             : }
    3296             : GEN
    3297           0 : Flxq_auttrace(GEN x, ulong n, GEN T, ulong p)
    3298           0 : { return Flxq_auttrace_pre(x, n, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3299             : 
    3300             : static long
    3301      394041 : bounded_order(ulong p, GEN b, long k)
    3302             : {
    3303      394041 :   GEN a = modii(utoipos(p), b);
    3304             :   long i;
    3305      809774 :   for(i = 1; i < k; i++)
    3306             :   {
    3307      515143 :     if (equali1(a)) return i;
    3308      415735 :     a = modii(muliu(a,p),b);
    3309             :   }
    3310      294631 :   return 0;
    3311             : }
    3312             : 
    3313             : /* n = (p^d-a)\b
    3314             :  * b = bb*p^vb
    3315             :  * p^k = 1 [bb]
    3316             :  * d = m*k+r+vb
    3317             :  * u = (p^k-1)/bb;
    3318             :  * v = (p^(r+vb)-a)/b;
    3319             :  * w = (p^(m*k)-1)/(p^k-1)
    3320             :  * n = p^r*w*u+v
    3321             :  * w*u = p^vb*(p^(m*k)-1)/b
    3322             :  * n = p^(r+vb)*(p^(m*k)-1)/b+(p^(r+vb)-a)/b */
    3323             : static GEN
    3324    22372686 : Flxq_pow_Frobenius(GEN x, GEN n, GEN aut, GEN T, ulong p, ulong pi)
    3325             : {
    3326    22372686 :   pari_sp av=avma;
    3327    22372686 :   long d = get_Flx_degree(T);
    3328    22372686 :   GEN an = absi_shallow(n), z, q;
    3329    22372686 :   if (abscmpiu(an,p)<0 || cmpis(an,d)<=0) return Flxq_pow_pre(x, n, T, p, pi);
    3330      394403 :   q = powuu(p, d);
    3331      394402 :   if (dvdii(q, n))
    3332             :   {
    3333         314 :     long vn = logint(an, utoipos(p));
    3334         314 :     GEN autvn = vn==1 ? aut: Flxq_autpow_pre(aut,vn,T,p,pi);
    3335         314 :     z = Flx_Flxq_eval_pre(x,autvn,T,p,pi);
    3336             :   } else
    3337             :   {
    3338      394088 :     GEN b = diviiround(q, an), a = subii(q, mulii(an,b));
    3339             :     GEN bb, u, v, autk;
    3340      394088 :     long vb = Z_lvalrem(b,p,&bb);
    3341      394089 :     long m, r, k = is_pm1(bb)? 1: bounded_order(p,bb,d);
    3342      394088 :     if (!k || d-vb < k) return Flxq_pow_pre(x,n, T,p,pi);
    3343       99450 :     m = (d-vb)/k; r = (d-vb)%k;
    3344       99450 :     u = diviiexact(subiu(powuu(p,k),1),bb);
    3345       99450 :     v = diviiexact(subii(powuu(p,r+vb),a),b);
    3346       99450 :     autk = k==1 ? aut: Flxq_autpow_pre(aut,k,T,p,pi);
    3347       99450 :     if (r)
    3348             :     {
    3349         487 :       GEN autr = r==1 ? aut: Flxq_autpow_pre(aut,r,T,p,pi);
    3350         487 :       z = Flx_Flxq_eval_pre(x,autr,T,p,pi);
    3351       98963 :     } else z = x;
    3352       99450 :     if (m > 1) z = gel(Flxq_autsum_pre(mkvec2(autk, z), m, T, p, pi), 2);
    3353       99450 :     if (!is_pm1(u)) z = Flxq_pow_pre(z, u, T, p, pi);
    3354       99450 :     if (signe(v)) z = Flxq_mul_pre(z, Flxq_pow_pre(x, v, T, p, pi), T, p, pi);
    3355             :   }
    3356       99764 :   return gc_upto(av,signe(n)>0 ? z : Flxq_inv_pre(z,T,p,pi));
    3357             : }
    3358             : 
    3359             : static GEN
    3360    22365276 : _Flxq_pow(void *data, GEN x, GEN n)
    3361             : {
    3362    22365276 :   struct _Flxq *D = (struct _Flxq*)data;
    3363    22365276 :   return Flxq_pow_Frobenius(x, n, D->aut, D->T, D->p, D->pi);
    3364             : }
    3365             : 
    3366             : static GEN
    3367        5578 : _Flxq_rand(void *data)
    3368             : {
    3369        5578 :   pari_sp av=avma;
    3370        5578 :   struct _Flxq *D = (struct _Flxq*)data;
    3371             :   GEN z;
    3372             :   do
    3373             :   {
    3374        5579 :     set_avma(av);
    3375        5579 :     z = random_Flx(get_Flx_degree(D->T),get_Flx_var(D->T),D->p);
    3376        5579 :   } while (lgpol(z)==0);
    3377        5578 :   return z;
    3378             : }
    3379             : 
    3380             : /* discrete log in FpXQ for a in Fp^*, g in FpXQ^* of order ord */
    3381             : static GEN
    3382       35543 : Fl_Flxq_log(ulong a, GEN g, GEN o, GEN T, ulong p)
    3383             : {
    3384       35543 :   pari_sp av = avma;
    3385             :   GEN q,n_q,ord,ordp, op;
    3386             : 
    3387       35543 :   if (a == 1UL) return gen_0;
    3388             :   /* p > 2 */
    3389             : 
    3390       35543 :   ordp = utoi(p - 1);
    3391       35543 :   ord  = get_arith_Z(o);
    3392       35543 :   if (!ord) ord = T? subiu(powuu(p, get_FpX_degree(T)), 1): ordp;
    3393       35543 :   if (a == p - 1) /* -1 */
    3394        7739 :     return gc_INT(av, shifti(ord,-1));
    3395       27804 :   ordp = gcdii(ordp, ord);
    3396       27804 :   op = typ(o)==t_MAT ? famat_Z_gcd(o, ordp) : ordp;
    3397             : 
    3398       27804 :   q = NULL;
    3399       27804 :   if (T)
    3400             :   { /* we want < g > = Fp^* */
    3401       27804 :     if (!equalii(ord,ordp)) {
    3402       11906 :       q = diviiexact(ord,ordp);
    3403       11906 :       g = Flxq_pow(g,q,T,p);
    3404             :     }
    3405             :   }
    3406       27804 :   n_q = Fp_log(utoi(a), utoipos(uel(g,2)), op, utoipos(p));
    3407       27804 :   if (lg(n_q)==1) return gc_uptoleaf(av, n_q);
    3408       27804 :   if (q) n_q = mulii(q, n_q);
    3409       27804 :   return gc_INT(av, n_q);
    3410             : }
    3411             : 
    3412             : static GEN
    3413      519281 : Flxq_easylog(void* E, GEN a, GEN g, GEN ord)
    3414             : {
    3415      519281 :   struct _Flxq *f = (struct _Flxq *)E;
    3416      519281 :   GEN T = f->T;
    3417      519281 :   ulong p = f->p;
    3418      519281 :   long d = get_Flx_degree(T);
    3419      519281 :   if (Flx_equal1(a)) return gen_0;
    3420      359510 :   if (Flx_equal(a,g)) return gen_1;
    3421      174417 :   if (!degpol(a))
    3422       35543 :     return Fl_Flxq_log(uel(a,2), g, ord, T, p);
    3423      138874 :   if (typ(ord)!=t_INT || d <= 4 || d == 6 || abscmpiu(ord,1UL<<27)<0)
    3424      138846 :     return NULL;
    3425          28 :   return Flxq_log_index(a, g, ord, T, p);
    3426             : }
    3427             : 
    3428             : static const struct bb_group Flxq_star={_Flxq_mul,_Flxq_pow,_Flxq_rand,hash_GEN,Flx_equal,Flx_equal1,Flxq_easylog};
    3429             : 
    3430             : const struct bb_group *
    3431      280884 : get_Flxq_star(void **E, GEN T, ulong p)
    3432             : {
    3433      280884 :   struct _Flxq *e = (struct _Flxq *) stack_malloc(sizeof(struct _Flxq));
    3434      280883 :   e->T = T; e->p  = p; e->pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3435      280883 :   e->aut =  Flx_Frobenius_pre(T, p, e->pi);
    3436      280883 :   *E = (void*)e; return &Flxq_star;
    3437             : }
    3438             : 
    3439             : GEN
    3440       97328 : Flxq_order(GEN a, GEN ord, GEN T, ulong p)
    3441             : {
    3442             :   void *E;
    3443       97328 :   const struct bb_group *S = get_Flxq_star(&E,T,p);
    3444       97328 :   return gen_order(a,ord,E,S);
    3445             : }
    3446             : 
    3447             : GEN
    3448      164294 : Flxq_log(GEN a, GEN g, GEN ord, GEN T, ulong p)
    3449             : {
    3450             :   void *E;
    3451      164294 :   pari_sp av = avma;
    3452      164294 :   const struct bb_group *S = get_Flxq_star(&E,T,p);
    3453      164294 :   GEN v = get_arith_ZZM(ord), F = gmael(v,2,1);
    3454      164294 :   if (lg(F) > 1 && Flxq_log_use_index(veclast(F), T, p))
    3455       24311 :     v = mkvec2(gel(v, 1), ZM_famat_limit(gel(v, 2), int2n(27)));
    3456      164294 :   return gc_uptoleaf(av, gen_PH_log(a, g, v, E, S));
    3457             : }
    3458             : 
    3459             : static GEN
    3460      292682 : Flxq_sumautsum_sqr(void *E, GEN xzd)
    3461             : {
    3462      292682 :   struct _Flxq *D = (struct _Flxq*)E;
    3463      292682 :   pari_sp av = avma;
    3464             :   GEN xi, zeta, delta, xi2, zeta2, delta2, temp, xipow;
    3465      292682 :   GEN T = D->T;
    3466      292682 :   ulong d, p = D-> p, pi = D->pi;
    3467      292682 :   xi = gel(xzd, 1); zeta = gel(xzd, 2); delta = gel(xzd, 3);
    3468             : 
    3469      292682 :   d = brent_kung_optpow(get_Flx_degree(T)-1,3,1);
    3470      292682 :   xipow = Flxq_powers_pre(xi, d, T, p, pi);
    3471             : 
    3472      292682 :   xi2 = Flx_FlxqV_eval_pre(xi, xipow, T, p, pi);
    3473      292682 :   zeta2 = Flxq_mul_pre(zeta, Flx_FlxqV_eval_pre(zeta,  xipow, T, p, pi), T, p, pi);
    3474      292682 :   temp  = Flxq_mul_pre(zeta, Flx_FlxqV_eval_pre(delta, xipow, T, p, pi), T, p, pi);
    3475      292682 :   delta2 = Flx_add(delta, temp, p);
    3476      292682 :   return gc_GEN(av, mkvec3(xi2, zeta2, delta2));
    3477             : }
    3478             : 
    3479             : static GEN
    3480       40558 : Flxq_sumautsum_msqr(void *E, GEN xzd)
    3481             : {
    3482       40558 :   struct _Flxq *D = (struct _Flxq*)E;
    3483       40558 :   pari_sp av = avma;
    3484             :   GEN xii, zetai, deltai, xzd2;
    3485       40558 :   GEN T = D->T, xi0pow = gel(D->aut, 1), zeta0 = gel(D->aut, 2);
    3486       40558 :   ulong p = D-> p, pi = D->pi;
    3487       40558 :   xzd2 = Flxq_sumautsum_sqr(E, xzd);
    3488       40558 :   xii = Flx_FlxqV_eval_pre(gel(xzd2, 1), xi0pow, T, p, pi);
    3489       40558 :   zetai = Flxq_mul_pre(zeta0, Flx_FlxqV_eval_pre(gel(xzd2, 2), xi0pow, T, p, pi), T, p, pi);
    3490       40558 :   deltai = Flx_add(gel(xzd2, 3), zetai, p);
    3491             : 
    3492       40558 :   return gc_GEN(av, mkvec3(xii, zetai, deltai));
    3493             : }
    3494             : 
    3495             : /*returns a + a^(1+s) + a^(1+s+2s) + ... + a^(1+s+...+is)
    3496             :   where ax = [a,s] with s an automorphism */
    3497             : static GEN
    3498      208704 : Flxq_sumautsum_pre(GEN ax, long i, GEN T, ulong p, ulong pi) {
    3499      208704 :   pari_sp av = avma;
    3500             :   GEN a, xi, zeta, vec, res;
    3501             :   struct _Flxq D;
    3502             :   ulong d;
    3503      208704 :   D.T = Flx_get_red(T, p); D.p = p; D.pi = pi;
    3504      208704 :   a = gel(ax, 1); xi = gel(ax,2);
    3505      208704 :   d = brent_kung_optpow(get_Flx_degree(T)-1,2*(hammingl(i)-1),1);
    3506      208704 :   zeta = Flx_Flxq_eval_pre(a, xi, T, p, pi);
    3507      208704 :   D.aut = mkvec2(Flxq_powers_pre(xi, d, T, p, pi), zeta);
    3508             : 
    3509      208704 :   vec = gen_powu_fold(mkvec3(xi, zeta, zeta), i, (void *)&D, Flxq_sumautsum_sqr, Flxq_sumautsum_msqr);
    3510      208704 :   res = Flxq_mul_pre(a, Flx_add(pol1_Flx(get_Flx_var(T)), gel(vec, 3), p), T, p, pi);
    3511             : 
    3512      208704 :   return gc_GEN(av, res);
    3513             : }
    3514             : 
    3515             : /*algorithm from
    3516             : Doliskani, J., & Schost, E. (2014).
    3517             : Taking roots over high extensions of finite fields*/
    3518             : static GEN
    3519       35706 : Flxq_sqrtl_spec_pre(GEN z, GEN n, GEN T, ulong p, ulong pi, GEN *zetan)
    3520             : {
    3521       35706 :   pari_sp av = avma;
    3522             :   GEN psn, c, b, new_z, beta, x, y, w, ax, g, zeta;
    3523       35706 :   long s, l, v = get_Flx_var(T), d = get_Flx_degree(T);
    3524             :   ulong zeta2, beta2;
    3525       35706 :   s = itos(Fp_order(utoi(p), stoi(d), n));
    3526       35706 :   if(s >= d || d % s != 0)
    3527           0 :     pari_err(e_MISC, "expected p's order mod n to divide the degree of T");
    3528       35706 :   l = d/s;
    3529       35706 :   if (!lgpol(z)) return pol0_Flx(get_Flx_var(T));
    3530       35706 :   T = Flx_get_red(T, p);
    3531       35705 :   ax = mkvec2(NULL, Flxq_autpow_pre(Flx_Frobenius_pre(T,p,pi), s, T, p,pi));
    3532       35704 :   psn = diviiexact(subiu(powuu(p, s), 1), n);
    3533             :   do {
    3534       39696 :     do c = random_Flx(d, v, p); while (!lgpol(c));
    3535       39191 :     new_z = Flxq_mul_pre(z, Flxq_pow_pre(c, n, T, p,pi), T, p,pi);
    3536       39194 :     gel(ax,1) = Flxq_pow_pre(new_z, psn, T, p,pi);
    3537             : 
    3538             :     /*If l == 2, b has to be 1 + a^((p^s-1)/n)*/
    3539       39193 :     if(l == 2) y = gel(ax, 1);
    3540        1235 :     else y = Flxq_sumautsum_pre(ax, l-2, T, p, pi);
    3541       39193 :     b = Flx_Fl_add(y, 1, p);
    3542       39193 :   } while (!lgpol(b));
    3543             : 
    3544       35706 :   x = Flxq_mul_pre(new_z, Flxq_pow_pre(b, n, T, p,pi), T, p,pi);
    3545       35703 :   if(s == 1) {
    3546       35619 :     if (degpol(x) > 0) return gc_NULL(av);
    3547       35577 :     beta2 = Fl_sqrtn(Flx_constant(x), umodiu(n, p), p, &zeta2);
    3548       35581 :     if (beta2==~0UL) return gc_NULL(av);
    3549       35581 :     if(zetan) *zetan = monomial_Flx(zeta2, 0, get_Flx_var(T));
    3550       35581 :     w = Flx_Fl_mul(Flxq_inv_pre(Flxq_mul_pre(b, c, T, p,pi), T, p,pi), beta2, p);
    3551       35579 :     (void)gc_all(av, zetan? 2: 1, &w, zetan);
    3552       35581 :     return w;
    3553             :   }
    3554          84 :   g = Flxq_minpoly(x, T, p);
    3555          84 :   if (degpol(g) != s) return gc_NULL(av);
    3556          77 :   beta = Flxq_sqrtn(polx_Flx(get_Flx_var(T)), n, g, p, &zeta);
    3557          77 :   if (!beta) return gc_NULL(av);
    3558             : 
    3559          77 :   if(zetan) *zetan = Flx_Flxq_eval(zeta, x, T, p);
    3560          77 :   beta = Flx_Flxq_eval(beta, x, T, p);
    3561          77 :   w = Flxq_mul_pre(Flxq_inv_pre(Flxq_mul_pre(b, c, T, p,pi), T, p,pi), beta, T, p,pi);
    3562          77 :   (void)gc_all(av, zetan? 2: 1, &w, zetan);
    3563          77 :   return w;
    3564             : }
    3565             : 
    3566             : static GEN
    3567       19262 : Flxq_sqrtn_spec_pre(GEN a, GEN n, GEN T, ulong p, ulong pi, GEN q, GEN *zetan)
    3568             : {
    3569       19262 :   pari_sp ltop = avma;
    3570             :   GEN z, m, u1, u2;
    3571             :   int is_1;
    3572       19262 :   if (is_pm1(n))
    3573             :   {
    3574         847 :     if (zetan) *zetan = pol1_Flx(get_Flx_var(T));
    3575         847 :     return signe(n) < 0? Flxq_inv_pre(a, T, p,pi): gcopy(a);
    3576             :   }
    3577       18415 :   is_1 = gequal1(a);
    3578       18415 :   if (is_1 && !zetan) return gcopy(a);
    3579       18415 :   z = pol1_Flx(get_Flx_var(T));
    3580       18414 :   m = bezout(n,q,&u1,&u2);
    3581       18414 :   if (!is_pm1(m))
    3582             :   {
    3583       18414 :     GEN F = Z_factor(m);
    3584       18414 :     long i, j, j2 = 0; /* -Wall */
    3585             :     GEN y, l;
    3586       18414 :     pari_sp av1 = avma;
    3587       36906 :     for (i = nbrows(F); i; i--)
    3588             :     {
    3589       18540 :       l = gcoeff(F,i,1);
    3590       18540 :       j = itos(gcoeff(F,i,2));
    3591       18540 :       if(zetan) {
    3592         188 :         a = Flxq_sqrtl_spec_pre(a,l,T,p,pi,&y);
    3593         237 :         if (!a) return gc_NULL(ltop);
    3594         188 :         j--;
    3595         188 :         j2 = j;
    3596             :       }
    3597       18540 :       if (!is_1 && j > 0) {
    3598             :         do
    3599             :         {
    3600       35308 :           a = Flxq_sqrtl_spec_pre(a,l,T,p,pi,NULL);
    3601       35309 :           if (!a) return gc_NULL(ltop);
    3602       35260 :         } while (--j);
    3603             :       }
    3604             :       /*This is below finding a's root,
    3605             :       so we don't spend time doing this, if a is not n-th root*/
    3606       18492 :       if(zetan) {
    3607         391 :         for(; j2>0; j2--) y = Flxq_sqrtl_spec_pre(y, l, T, p,pi,NULL);
    3608         181 :         z = Flxq_mul_pre(z, y, T, p,pi);
    3609             :       }
    3610       18492 :       if (gc_needed(ltop,1))
    3611             :       { /* n can have lots of prime factors*/
    3612           0 :         if(DEBUGMEM>1) pari_warn(warnmem,"Flxq_sqrtn_spec");
    3613           0 :         (void)gc_all(av1, zetan? 2: 1, &a, &z);
    3614             :       }
    3615             :     }
    3616             :   }
    3617             : 
    3618       18366 :   if (!equalii(m, n))
    3619         119 :     a = Flxq_pow_pre(a,modii(u1,q), T, p,pi);
    3620       18366 :   if (zetan)
    3621             :   {
    3622         181 :     *zetan = z;
    3623         181 :     (void)gc_all(ltop,2,&a,zetan);
    3624             :   }
    3625             :   else /* is_1 is 0: a was modified above -> gc_upto valid */
    3626       18185 :     a = gc_upto(ltop, a);
    3627       18366 :   return a;
    3628             : }
    3629             : 
    3630             : GEN
    3631       20456 : Flxq_sqrtn(GEN a, GEN n, GEN T, ulong p, GEN *zeta)
    3632             : {
    3633       20456 :   if (!lgpol(a))
    3634             :   {
    3635           7 :     if (signe(n) < 0) pari_err_INV("Flxq_sqrtn",a);
    3636           0 :     if (zeta)
    3637           0 :       *zeta=pol1_Flx(get_Flx_var(T));
    3638           0 :     return pol0_Flx(get_Flx_var(T));
    3639             :   }
    3640       20449 :   else if(p == 2) {
    3641        1187 :     pari_sp av = avma;
    3642             :     GEN z;
    3643        1187 :     z = F2xq_sqrtn(Flx_to_F2x(a), n, Flx_to_F2x(get_FpX_mod(T)), zeta);
    3644        1187 :     if (!z) return NULL;
    3645        1187 :     z = F2x_to_Flx(z);
    3646        1187 :     if (!zeta) return gc_uptoleaf(av, z);
    3647           0 :     *zeta=F2x_to_Flx(*zeta);
    3648           0 :     return gc_all(av, 2, &z,zeta);
    3649             :   }
    3650             :   else
    3651             :   {
    3652             :     void *E;
    3653       19262 :     pari_sp av = avma;
    3654       19262 :     const struct bb_group *S = get_Flxq_star(&E,T,p);
    3655       19261 :     GEN o = subiu(powuu(p,get_Flx_degree(T)), 1);
    3656             :     GEN m, u1, u2, l, zeta2, F, n2, z;
    3657       19261 :     long i, s, pi, d = get_Flx_degree(T);
    3658       19261 :     pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3659       19261 :     m = bezout(n,o,&u1,&u2);
    3660       19261 :     F = Z_factor(m);
    3661       41492 :     for (i = nbrows(F); i; i--)
    3662             :     {
    3663       22230 :       l = gcoeff(F,i,1);
    3664       22230 :       s = itos(Fp_order(utoi(p), subiu(l, 1), l));
    3665             :       /*Flxq_sqrtn_spec only works if d > s and s | d
    3666             :       for those factors of m we use Flxq_sqrtn_spec
    3667             :       for the other factor we stay with gen_Shanks_sqrtn*/
    3668       22230 :       if(d <= s || d % s != 0) {
    3669        3689 :         gcoeff(F,i,2) = gen_0;
    3670             :       }
    3671       18541 :       else gcoeff(F,i,2) = stoi(Z_pval(n,l));
    3672             :     }
    3673       19262 :     F = factorback(F);
    3674       19262 :     z = Flxq_sqrtn_spec_pre(a,F,T, p,pi,o,zeta);
    3675       19262 :     if(!z) return gc_NULL(av);
    3676       19213 :     n2 = diviiexact(n, F);
    3677       19212 :     if(!gequal1(n2)) {
    3678        3934 :       if(zeta) zeta2 = gcopy(*zeta);
    3679        3934 :       z = gen_Shanks_sqrtn(z, n2, o, zeta, E, S);
    3680        3934 :       if (!z) return gc_NULL(av);
    3681        3934 :       if(zeta) *zeta = Flxq_mul_pre(*zeta, zeta2, T, p,pi);
    3682             :     }
    3683       19212 :     return gc_all(av, zeta?2:1, &z, zeta);
    3684             :   }
    3685             : }
    3686             : 
    3687             : GEN
    3688      230519 : Flxq_sqrt_pre(GEN z, GEN T, ulong p, ulong pi)
    3689             : {
    3690      230519 :   pari_sp av = avma;
    3691             :   long d;
    3692      230519 :   if (p==2)
    3693             :   {
    3694           0 :     GEN r = F2xq_sqrt(Flx_to_F2x(z), Flx_to_F2x(get_Flx_mod(T)));
    3695           0 :     return gc_upto(av, F2x_to_Flx(r));
    3696             :   }
    3697      230519 :   d = get_Flx_degree(T);
    3698      230519 :   if (d==2)
    3699             :   {
    3700       65765 :     GEN P = get_Flx_mod(T), s;
    3701       65765 :     ulong c = uel(P,2), b = uel(P,3), a = uel(P,4);
    3702       65765 :     ulong y = degpol(z)<1 ? 0: uel(z,3);
    3703       65765 :     if (a==1 && b==0)
    3704       15226 :     {
    3705       16006 :       ulong x = degpol(z)<1 ? Flx_constant(z): uel(z,2);
    3706       16006 :       GEN r = Fl2_sqrt_pre(mkvecsmall2(x, y), Fl_neg(c, p), p, pi);
    3707       16006 :       if (!r) return gc_NULL(av);
    3708       15226 :       s = mkvecsmall3(P[1], uel(r,1), uel(r,2));
    3709             :     }
    3710             :     else
    3711             :     {
    3712       49759 :       ulong b2 = Fl_halve(b, p), t = Fl_div(b2, a, p);
    3713       49759 :       ulong D = Fl_sub(Fl_sqr(b2, p), Fl_mul(a, c, p), p);
    3714       49759 :       ulong x = degpol(z)<1 ? Flx_constant(z): Fl_sub(uel(z,2), Fl_mul(uel(z,3), t, p), p);
    3715       49759 :       GEN r = Fl2_sqrt_pre(mkvecsmall2(x, y), D, p, pi);
    3716       49759 :       if (!r) return gc_NULL(av);
    3717       47365 :       s = mkvecsmall3(P[1], Fl_add(uel(r,1), Fl_mul(uel(r,2),t,p), p), uel(r,2));
    3718             :     }
    3719       62591 :     return gc_uptoleaf(av, Flx_renormalize(s, 4));
    3720             :   }
    3721      164754 :   if (lgpol(z)<=1 && odd(d))
    3722             :   {
    3723       11745 :     pari_sp av = avma;
    3724       11745 :     ulong s = Fl_sqrt(Flx_constant(z), p);
    3725       11745 :     if (s==~0UL) return gc_NULL(av);
    3726       11731 :     return gc_GEN(av, Fl_to_Flx(s, get_Flx_var(T)));
    3727             :   } else
    3728             :   {
    3729             :     GEN c, b, new_z, x, y, w, ax;
    3730             :     ulong p2, beta;
    3731      153009 :     long v = get_Flx_var(T);
    3732      153009 :     if (!lgpol(z)) return pol0_Flx(v);
    3733      152344 :     T = Flx_get_red_pre(T, p, pi);
    3734      152344 :     ax = mkvec2(NULL, Flx_Frobenius_pre(T, p, pi));
    3735      152344 :     p2 = p >> 1; /* (p-1) / 2 */
    3736             :     do {
    3737      208141 :       do c = random_Flx(d, v, p); while (!lgpol(c));
    3738             : 
    3739      207469 :       new_z = Flxq_mul_pre(z, Flxq_sqr_pre(c, T, p, pi), T, p, pi);
    3740      207469 :       gel(ax, 1) = Flxq_powu_pre(new_z, p2, T, p, pi);
    3741      207469 :       y = Flxq_sumautsum_pre(ax, d-2, T, p, pi); /* d > 2 */
    3742      207469 :       b = Flx_Fl_add(y, 1UL, p);
    3743      207469 :     } while (!lgpol(b));
    3744             : 
    3745      152344 :     x = Flxq_mul_pre(new_z, Flxq_sqr_pre(b, T, p, pi), T, p, pi);
    3746      152344 :     if (degpol(x) > 0) return gc_NULL(av);
    3747      145302 :     beta = Fl_sqrt_pre(Flx_constant(x), p, pi);
    3748      145302 :     if (beta==~0UL) return gc_NULL(av);
    3749      145302 :     w = Flx_Fl_mul(Flxq_inv_pre(Flxq_mul_pre(b, c, T,p,pi), T,p,pi), beta, p);
    3750      145302 :     return gc_GEN(av, w);
    3751             :   }
    3752             : }
    3753             : 
    3754             : GEN
    3755      230519 : Flxq_sqrt(GEN a, GEN T, ulong p)
    3756      230519 : { return Flxq_sqrt_pre(a, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3757             : 
    3758             : /* assume T irreducible mod p */
    3759             : int
    3760      404492 : Flxq_issquare(GEN x, GEN T, ulong p)
    3761             : {
    3762      404492 :   if (lgpol(x) == 0 || p == 2) return 1;
    3763      397989 :   return krouu(Flxq_norm(x,T,p), p) == 1;
    3764             : }
    3765             : 
    3766             : /* assume T irreducible mod p */
    3767             : int
    3768           0 : Flxq_is2npower(GEN x, long n, GEN T, ulong p)
    3769             : {
    3770             :   pari_sp av;
    3771             :   GEN m;
    3772           0 :   if (n==1) return Flxq_issquare(x, T, p);
    3773           0 :   if (lgpol(x) == 0 || p == 2) return 1;
    3774           0 :   av = avma;
    3775           0 :   m = shifti(subiu(powuu(p, get_Flx_degree(T)), 1), -n);
    3776           0 :   return gc_bool(av, Flx_equal1(Flxq_pow(x, m, T, p)));
    3777             : }
    3778             : 
    3779             : GEN
    3780      113589 : Flxq_lroot_fast_pre(GEN a, GEN sqx, GEN T, long p, ulong pi)
    3781             : {
    3782      113589 :   pari_sp av=avma;
    3783      113589 :   GEN A = Flx_splitting(a,p);
    3784      113589 :   return gc_uptoleaf(av, FlxqV_dotproduct_pre(A,sqx,T,p,pi));
    3785             : }
    3786             : GEN
    3787           0 : Flxq_lroot_fast(GEN a, GEN sqx, GEN T, long p)
    3788           0 : { return Flxq_lroot_fast_pre(a, sqx, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3789             : 
    3790             : GEN
    3791       25053 : Flxq_lroot_pre(GEN a, GEN T, long p, ulong pi)
    3792             : {
    3793       25053 :   pari_sp av=avma;
    3794       25053 :   long n = get_Flx_degree(T), d = degpol(a);
    3795             :   GEN sqx, V;
    3796       25053 :   if (n==1) return leafcopy(a);
    3797       25053 :   if (n==2) return Flxq_powu_pre(a, p, T, p, pi);
    3798       25053 :   sqx = Flxq_autpow_pre(Flx_Frobenius_pre(T, p, pi), n-1, T, p, pi);
    3799       25053 :   if (d==1 && a[2]==0 && a[3]==1) return gc_uptoleaf(av, sqx);
    3800           0 :   if (d>=p)
    3801             :   {
    3802           0 :     V = Flxq_powers_pre(sqx,p-1,T,p,pi);
    3803           0 :     return gc_uptoleaf(av, Flxq_lroot_fast_pre(a,V,T,p,pi));
    3804             :   } else
    3805           0 :     return gc_uptoleaf(av, Flx_Flxq_eval_pre(a,sqx,T,p,pi));
    3806             : }
    3807             : GEN
    3808           0 : Flxq_lroot(GEN a, GEN T, long p)
    3809           0 : { return Flxq_lroot_pre(a, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3810             : 
    3811             : ulong
    3812      443331 : Flxq_norm(GEN x, GEN TB, ulong p)
    3813             : {
    3814      443331 :   GEN T = get_Flx_mod(TB);
    3815      443331 :   ulong y = Flx_resultant(T, x, p), L = Flx_lead(T);
    3816      443331 :   if (L==1 || lgpol(x)==0) return y;
    3817           0 :   return Fl_div(y, Fl_powu(L, (ulong)degpol(x), p), p);
    3818             : }
    3819             : 
    3820             : ulong
    3821        4696 : Flxq_trace(GEN x, GEN TB, ulong p)
    3822             : {
    3823        4696 :   pari_sp av = avma;
    3824             :   ulong t;
    3825        4696 :   GEN T = get_Flx_mod(TB);
    3826        4696 :   long n = degpol(T)-1;
    3827        4696 :   GEN z = Flxq_mul(x, Flx_deriv(T, p), TB, p);
    3828        4696 :   t = degpol(z)<n ? 0 : Fl_div(z[2+n],T[3+n],p);
    3829        4696 :   return gc_ulong(av, t);
    3830             : }
    3831             : 
    3832             : /*x must be reduced*/
    3833             : GEN
    3834        3624 : Flxq_charpoly(GEN x, GEN TB, ulong p)
    3835             : {
    3836        3624 :   pari_sp ltop=avma;
    3837        3624 :   GEN T = get_Flx_mod(TB);
    3838        3624 :   long vs = evalvarn(fetch_var());
    3839        3624 :   GEN xm1 = deg1pol_shallow(pol1_Flx(x[1]),Flx_neg(x,p),vs);
    3840        3624 :   GEN r = Flx_FlxY_resultant(T, xm1, p);
    3841        3624 :   r[1] = x[1];
    3842        3624 :   (void)delete_var(); return gc_upto(ltop, r);
    3843             : }
    3844             : 
    3845             : /* Computing minimal polynomial :                         */
    3846             : /* cf Shoup 'Efficient Computation of Minimal Polynomials */
    3847             : /*          in Algebraic Extensions of Finite Fields'     */
    3848             : 
    3849             : /* Let v a linear form, return the linear form z->v(tau*z)
    3850             :    that is, v*(M_tau) */
    3851             : 
    3852             : static GEN
    3853     1692319 : Flxq_transmul_init(GEN tau, GEN T, ulong p, ulong pi)
    3854             : {
    3855             :   GEN bht;
    3856     1692319 :   GEN h, Tp = get_Flx_red(T, &h);
    3857     1692315 :   long n = degpol(Tp), vT = Tp[1];
    3858     1692307 :   GEN ft = Flx_recipspec(Tp+2, n+1, n+1);
    3859     1692294 :   GEN bt = Flx_recipspec(tau+2, lgpol(tau), n);
    3860     1692294 :   ft[1] = vT; bt[1] = vT;
    3861     1692294 :   if (h)
    3862        2688 :     bht = Flxn_mul_pre(bt, h, n-1, p, pi);
    3863             :   else
    3864             :   {
    3865     1689606 :     GEN bh = Flx_div_pre(Flx_shift(tau, n-1), T, p, pi);
    3866     1689605 :     bht = Flx_recipspec(bh+2, lgpol(bh), n-1);
    3867     1689610 :     bht[1] = vT;
    3868             :   }
    3869     1692298 :   return mkvec3(bt, bht, ft);
    3870             : }
    3871             : 
    3872             : static GEN
    3873     4084371 : Flxq_transmul(GEN tau, GEN a, long n, ulong p, ulong pi)
    3874             : {
    3875     4084371 :   pari_sp ltop = avma;
    3876             :   GEN t1, t2, t3, vec;
    3877     4084371 :   GEN bt = gel(tau, 1), bht = gel(tau, 2), ft = gel(tau, 3);
    3878     4084371 :   if (lgpol(a)==0) return pol0_Flx(a[1]);
    3879     4053745 :   t2  = Flx_shift(Flx_mul_pre(bt, a, p, pi),1-n);
    3880     4053344 :   if (lgpol(bht)==0) return gc_uptoleaf(ltop, t2);
    3881     3057138 :   t1  = Flx_shift(Flx_mul_pre(ft, a, p, pi),-n);
    3882     3057189 :   t3  = Flxn_mul_pre(t1, bht, n-1, p, pi);
    3883     3057213 :   vec = Flx_sub(t2, Flx_shift(t3, 1), p);
    3884     3057254 :   return gc_uptoleaf(ltop, vec);
    3885             : }
    3886             : 
    3887             : GEN
    3888      784323 : Flxq_minpoly_pre(GEN x, GEN T, ulong p, ulong pi)
    3889             : {
    3890      784323 :   pari_sp ltop = avma;
    3891      784323 :   long vT = get_Flx_var(T), n = get_Flx_degree(T);
    3892             :   GEN v_x;
    3893      784317 :   GEN g = pol1_Flx(vT), tau = pol1_Flx(vT);
    3894      784290 :   T = Flx_get_red_pre(T, p, pi);
    3895      784291 :   v_x = Flxq_powers_pre(x, usqrt(2*n), T, p, pi);
    3896     1630447 :   while (lgpol(tau) != 0)
    3897             :   {
    3898             :     long i, j, m, k1;
    3899             :     GEN M, v, tr, g_prime, c;
    3900      846149 :     if (degpol(g) == n) { tau = pol1_Flx(vT); g = pol1_Flx(vT); }
    3901      846148 :     v = random_Flx(n, vT, p);
    3902      846172 :     tr = Flxq_transmul_init(tau, T, p, pi);
    3903      846153 :     v = Flxq_transmul(tr, v, n, p, pi);
    3904      846164 :     m = 2*(n-degpol(g));
    3905      846161 :     k1 = usqrt(m);
    3906      846165 :     tr = Flxq_transmul_init(gel(v_x,k1+1), T, p, pi);
    3907      846146 :     c = cgetg(m+2,t_VECSMALL);
    3908      846107 :     c[1] = vT;
    3909     4084184 :     for (i=0; i<m; i+=k1)
    3910             :     {
    3911     3238019 :       long mj = minss(m-i, k1);
    3912    12653416 :       for (j=0; j<mj; j++)
    3913     9415017 :         uel(c,m+1-(i+j)) = Flx_dotproduct_pre(v, gel(v_x,j+1), p, pi);
    3914     3238399 :       v = Flxq_transmul(tr, v, n, p, pi);
    3915             :     }
    3916      846165 :     c = Flx_renormalize(c, m+2);
    3917             :     /* now c contains <v,x^i> , i = 0..m-1  */
    3918      846164 :     M = Flx_halfgcd_pre(monomial_Flx(1, m, vT), c, p, pi);
    3919      846178 :     g_prime = gmael(M, 2, 2);
    3920      846178 :     if (degpol(g_prime) < 1) continue;
    3921      833842 :     g = Flx_mul_pre(g, g_prime, p, pi);
    3922      833830 :     tau = Flxq_mul_pre(tau, Flx_FlxqV_eval_pre(g_prime, v_x, T,p,pi), T,p,pi);
    3923             :   }
    3924      784249 :   g = Flx_normalize(g,p);
    3925      784315 :   return gc_uptoleaf(ltop,g);
    3926             : }
    3927             : GEN
    3928       44467 : Flxq_minpoly(GEN x, GEN T, ulong p)
    3929       44467 : { return Flxq_minpoly_pre(x, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    3930             : 
    3931             : GEN
    3932          20 : Flxq_conjvec(GEN x, GEN T, ulong p)
    3933             : {
    3934          20 :   long i, l = 1+get_Flx_degree(T);
    3935          20 :   GEN z = cgetg(l,t_COL);
    3936          20 :   struct _Flxq D; set_Flxq(&D, T, p);
    3937          20 :   gel(z,1) = Flx_copy(x);
    3938          88 :   for (i=2; i<l; i++) gel(z,i) = _Flxq_powu(&D, gel(z,i-1), p);
    3939          20 :   return z;
    3940             : }
    3941             : 
    3942             : GEN
    3943        7201 : gener_Flxq(GEN T, ulong p, GEN *po)
    3944             : {
    3945        7201 :   long i, j, vT = get_Flx_var(T), f = get_Flx_degree(T);
    3946             :   ulong p_1, pi;
    3947             :   GEN g, L, L2, o, q, F;
    3948             :   pari_sp av0, av;
    3949             : 
    3950        7201 :   if (f == 1) {
    3951             :     GEN fa;
    3952          28 :     o = utoipos(p-1);
    3953          28 :     fa = Z_factor(o);
    3954          28 :     L = gel(fa,1);
    3955          28 :     L = vecslice(L, 2, lg(L)-1); /* remove 2 for efficiency */
    3956          28 :     g = Fl_to_Flx(pgener_Fl_local(p, vec_to_vecsmall(L)), vT);
    3957          28 :     if (po) *po = mkvec2(o, fa);
    3958          28 :     return g;
    3959             :   }
    3960             : 
    3961        7173 :   av0 = avma; p_1 = p - 1;
    3962        7173 :   q = diviuexact(subiu(powuu(p,f), 1), p_1);
    3963             : 
    3964        7173 :   L = cgetg(1, t_VECSMALL);
    3965        7173 :   if (p > 3)
    3966             :   {
    3967        2371 :     ulong t = p_1 >> vals(p_1);
    3968        2371 :     GEN P = gel(factoru(t), 1);
    3969        2371 :     L = cgetg_copy(P, &i);
    3970        3787 :     while (--i) L[i] = p_1 / P[i];
    3971             :   }
    3972        7173 :   o = factor_pn_1(utoipos(p),f);
    3973        7173 :   L2 = leafcopy( gel(o, 1) );
    3974       19212 :   for (i = j = 1; i < lg(L2); i++)
    3975             :   {
    3976       12039 :     if (umodui(p_1, gel(L2,i)) == 0) continue;
    3977        6488 :     gel(L2,j++) = diviiexact(q, gel(L2,i));
    3978             :   }
    3979        7173 :   setlg(L2, j); pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    3980        7173 :   F = Flx_Frobenius_pre(T, p, pi);
    3981       17703 :   for (av = avma;; set_avma(av))
    3982       10530 :   {
    3983             :     GEN tt;
    3984       17703 :     g = random_Flx(f, vT, p);
    3985       17703 :     if (degpol(g) < 1) continue;
    3986       12107 :     if (p == 2) tt = g;
    3987             :     else
    3988             :     {
    3989        8908 :       ulong t = Flxq_norm(g, T, p);
    3990        8908 :       if (t == 1 || !is_gener_Fl(t, p, p_1, L)) continue;
    3991        4774 :       tt = Flxq_powu_pre(g, p_1>>1, T, p, pi);
    3992             :     }
    3993       14583 :     for (i = 1; i < j; i++)
    3994             :     {
    3995        7410 :       GEN a = Flxq_pow_Frobenius(tt, gel(L2,i), F, T, p, pi);
    3996        7410 :       if (!degpol(a) && uel(a,2) == p_1) break;
    3997             :     }
    3998        7973 :     if (i == j) break;
    3999             :   }
    4000        7173 :   if (!po)
    4001             :   {
    4002         187 :     set_avma((pari_sp)g);
    4003         187 :     g = gc_uptoleaf(av0, g);
    4004             :   }
    4005             :   else {
    4006        6986 :     *po = mkvec2(subiu(powuu(p,f), 1), o);
    4007        6986 :     (void)gc_all(av0, 2, &g, po);
    4008             :   }
    4009        7173 :   return g;
    4010             : }
    4011             : 
    4012             : static GEN
    4013      366572 : _Flxq_neg(void *E, GEN x)
    4014      366572 : { struct _Flxq *s = (struct _Flxq *)E;
    4015      366572 :   return Flx_neg(x,s->p); }
    4016             : 
    4017             : static GEN
    4018     1461838 : _Flxq_rmul(void *E, GEN x, GEN y)
    4019     1461838 : { struct _Flxq *s = (struct _Flxq *)E;
    4020     1461838 :   return Flx_mul_pre(x,y,s->p,s->pi); }
    4021             : 
    4022             : static GEN
    4023        9460 : _Flxq_inv(void *E, GEN x)
    4024        9460 : { struct _Flxq *s = (struct _Flxq *)E;
    4025        9460 :   return Flxq_inv(x,s->T,s->p); }
    4026             : 
    4027             : static int
    4028       69139 : _Flxq_equal0(GEN x) { return lgpol(x)==0; }
    4029             : 
    4030             : static GEN
    4031        6567 : _Flxq_s(void *E, long x)
    4032        6567 : { struct _Flxq *s = (struct _Flxq *)E;
    4033        6567 :   ulong u = x<0 ? s->p+x: (ulong)x;
    4034        6567 :   return Fl_to_Flx(u, get_Flx_var(s->T));
    4035             : }
    4036             : 
    4037             : static const struct bb_field Flxq_field={_Flxq_red,_Flx_add,_Flxq_rmul,_Flxq_neg,
    4038             :                                          _Flxq_inv,_Flxq_equal0,_Flxq_s};
    4039             : 
    4040       68902 : const struct bb_field *get_Flxq_field(void **E, GEN T, ulong p)
    4041             : {
    4042       68902 :   GEN z = new_chunk(sizeof(struct _Flxq));
    4043       68902 :   set_Flxq((struct _Flxq *)z, T, p); *E = (void*)z; return &Flxq_field;
    4044             : }
    4045             : 
    4046             : /***********************************************************************/
    4047             : /**                               Flxn                                **/
    4048             : /***********************************************************************/
    4049             : 
    4050             : GEN
    4051       54426 : Flx_invLaplace(GEN x, ulong p)
    4052             : {
    4053       54426 :   long i, d = degpol(x);
    4054             :   ulong t;
    4055             :   GEN y;
    4056       54422 :   if (d <= 1) return Flx_copy(x);
    4057       54422 :   t = Fl_inv(factorial_Fl(d, p), p);
    4058       54474 :   y = cgetg(d+3, t_VECSMALL);
    4059       54430 :   y[1] = x[1];
    4060     1330491 :   for (i=d; i>=2; i--)
    4061             :   {
    4062     1276032 :     uel(y,i+2) = Fl_mul(uel(x,i+2), t, p);
    4063     1276027 :     t = Fl_mul(t, i, p);
    4064             :   }
    4065       54459 :   uel(y,3) = uel(x,3);
    4066       54459 :   uel(y,2) = uel(x,2);
    4067       54459 :   return y;
    4068             : }
    4069             : 
    4070             : GEN
    4071       27360 : Flx_Laplace(GEN x, ulong p)
    4072             : {
    4073       27360 :   long i, d = degpol(x);
    4074       27359 :   ulong t = 1;
    4075             :   GEN y;
    4076       27359 :   if (d <= 1) return Flx_copy(x);
    4077       27359 :   y = cgetg(d+3, t_VECSMALL);
    4078       27341 :   y[1] = x[1];
    4079       27341 :   uel(y,2) = uel(x,2);
    4080       27341 :   uel(y,3) = uel(x,3);
    4081      759138 :   for (i=2; i<=d; i++)
    4082             :   {
    4083      731756 :     t = Fl_mul(t, i%p, p);
    4084      731790 :     uel(y,i+2) = Fl_mul(uel(x,i+2), t, p);
    4085             :   }
    4086       27382 :   return y;
    4087             : }
    4088             : 
    4089             : GEN
    4090     6232212 : Flxn_red(GEN a, long n)
    4091             : {
    4092     6232212 :   long i, L, l = lg(a);
    4093             :   GEN  b;
    4094     6232212 :   if (l == 2 || !n) return zero_Flx(a[1]);
    4095     5842373 :   L = n+2; if (L > l) L = l;
    4096     5842373 :   b = cgetg(L, t_VECSMALL); b[1] = a[1];
    4097    59301478 :   for (i=2; i<L; i++) b[i] = a[i];
    4098     5839552 :   return Flx_renormalize(b,L);
    4099             : }
    4100             : 
    4101             : GEN
    4102     5061656 : Flxn_mul_pre(GEN a, GEN b, long n, ulong p, ulong pi)
    4103     5061656 : { return Flxn_red(Flx_mul_pre(a, b, p, pi), n); }
    4104             : GEN
    4105       75415 : Flxn_mul(GEN a, GEN b, long n, ulong p)
    4106       75415 : { return Flxn_mul_pre(a, b, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4107             : 
    4108             : GEN
    4109           0 : Flxn_sqr_pre(GEN a, long n, ulong p, ulong pi)
    4110           0 : { return Flxn_red(Flx_sqr_pre(a, p, pi), n); }
    4111             : GEN
    4112           0 : Flxn_sqr(GEN a, long n, ulong p)
    4113           0 : { return Flxn_sqr_pre(a, n, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4114             : 
    4115             : /* (f*g) \/ x^n */
    4116             : static GEN
    4117      938636 : Flx_mulhigh_i(GEN f, GEN g, long n, ulong p, ulong pi)
    4118      938636 : { return Flx_shift(Flx_mul_pre(f, g, p, pi),-n); }
    4119             : 
    4120             : static GEN
    4121      516816 : Flxn_mulhigh(GEN f, GEN g, long n2, long n, ulong p, ulong pi)
    4122             : {
    4123      516816 :   GEN F = Flx_blocks(f, n2, 2), fl = gel(F,1), fh = gel(F,2);
    4124      516492 :   return Flx_add(Flx_mulhigh_i(fl, g, n2, p, pi),
    4125             :                  Flxn_mul_pre(fh, g, n - n2, p, pi), p);
    4126             : }
    4127             : 
    4128             : /* g==NULL -> assume g==1 */
    4129             : GEN
    4130       55236 : Flxn_div_pre(GEN g, GEN f, long e, ulong p, ulong pi)
    4131             : {
    4132       55236 :   pari_sp av = avma, av2;
    4133             :   ulong mask;
    4134             :   GEN W;
    4135       55236 :   long n = 1;
    4136       55236 :   if (lg(f) <= 2) pari_err_INV("Flxn_inv",f);
    4137       55236 :   W = Fl_to_Flx(Fl_inv(uel(f,2),p), f[1]);
    4138       55258 :   mask = quadratic_prec_mask(e);
    4139       55253 :   av2 = avma;
    4140      259194 :   for (;mask>1;)
    4141             :   {
    4142             :     GEN u, fr;
    4143      203919 :     long n2 = n;
    4144      203919 :     n<<=1; if (mask & 1) n--;
    4145      203919 :     mask >>= 1;
    4146      203919 :     fr = Flxn_red(f, n);
    4147      203743 :     if (mask>1 || !g)
    4148             :     {
    4149      149597 :       u = Flxn_mul_pre(W, Flxn_mulhigh(fr, W, n2, n, p, pi), n-n2, p, pi);
    4150      149914 :       W = Flx_sub(W, Flx_shift(u, n2), p);
    4151             :     } else
    4152             :     {
    4153       54146 :       GEN y = Flxn_mul_pre(g, W, n, p, pi), yt =  Flxn_red(y, n-n2);
    4154       54155 :       u = Flxn_mul_pre(yt, Flxn_mulhigh(fr,  W, n2, n, p, pi), n-n2, p, pi);
    4155       54157 :       W = Flx_sub(y, Flx_shift(u, n2), p);
    4156             :     }
    4157      203905 :     if (gc_needed(av2,2))
    4158             :     {
    4159           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"Flxn_div, e = %ld", n);
    4160           0 :       W = gc_upto(av2, W);
    4161             :     }
    4162             :   }
    4163       55275 :   return gc_upto(av, W);
    4164             : }
    4165             : GEN
    4166       55197 : Flxn_div(GEN g, GEN f, long e, ulong p)
    4167       55197 : { return Flxn_div_pre(g, f, e, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4168             : 
    4169             : GEN
    4170        1030 : Flxn_inv(GEN f, long e, ulong p)
    4171        1030 : { return Flxn_div(NULL, f, e, p); }
    4172             : 
    4173             : GEN
    4174      109426 : Flxn_expint(GEN h, long e, ulong p)
    4175             : {
    4176      109426 :   pari_sp av = avma, av2;
    4177      109426 :   long v = h[1], n=1;
    4178      109426 :   GEN f = pol1_Flx(v), g = pol1_Flx(v);
    4179      109391 :   ulong mask = quadratic_prec_mask(e), pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4180      109394 :   av2 = avma;
    4181      422884 :   for (;mask>1;)
    4182             :   {
    4183             :     GEN u, w;
    4184      422799 :     long n2 = n;
    4185      422799 :     n<<=1; if (mask & 1) n--;
    4186      422799 :     mask >>= 1;
    4187      422799 :     u = Flxn_mul_pre(g, Flx_mulhigh_i(f, Flxn_red(h, n2-1), n2-1, p,pi), n-n2, p,pi);
    4188      422771 :     u = Flx_add(u, Flx_shift(Flxn_red(h, n-1), 1-n2), p);
    4189      422811 :     w = Flxn_mul_pre(f, Flx_integXn(u, n2-1, p), n-n2, p, pi);
    4190      422744 :     f = Flx_add(f, Flx_shift(w, n2), p);
    4191      422910 :     if (mask<=1) break;
    4192      313485 :     u = Flxn_mul_pre(g, Flxn_mulhigh(f, g, n2, n, p, pi), n-n2, p, pi);
    4193      313463 :     g = Flx_sub(g, Flx_shift(u, n2), p);
    4194      313490 :     if (gc_needed(av2,2))
    4195             :     {
    4196           0 :       if (DEBUGMEM>1) pari_warn(warnmem,"Flxn_exp, e = %ld", n);
    4197           0 :       (void)gc_all(av2, 2, &f, &g);
    4198             :     }
    4199             :   }
    4200      109510 :   return gc_upto(av, f);
    4201             : }
    4202             : 
    4203             : GEN
    4204           0 : Flxn_exp(GEN h, long e, ulong p)
    4205             : {
    4206           0 :   if (degpol(h)<1 || uel(h,2)!=0)
    4207           0 :     pari_err_DOMAIN("Flxn_exp","valuation", "<", gen_1, h);
    4208           0 :   return Flxn_expint(Flx_deriv(h, p), e, p);
    4209             : }
    4210             : 
    4211             : INLINE GEN
    4212      217409 : Flxn_recip(GEN x, long n)
    4213             : {
    4214      217409 :   GEN z=Flx_recipspec(x+2,lgpol(x),n);
    4215      217233 :   z[1]=x[1];
    4216      217233 :   return z;
    4217             : }
    4218             : 
    4219             : GEN
    4220       54157 : Flx_Newton(GEN P, long n, ulong p)
    4221             : {
    4222       54157 :   pari_sp av = avma;
    4223       54157 :   long d = degpol(P);
    4224       54152 :   GEN dP = Flxn_recip(Flx_deriv(P, p), d);
    4225       54060 :   GEN Q = Flxn_div(dP, Flxn_recip(P, d+1), n, p);
    4226       54131 :   return gc_uptoleaf(av, Q);
    4227             : }
    4228             : 
    4229             : GEN
    4230      109431 : Flx_fromNewton(GEN P, ulong p)
    4231             : {
    4232      109431 :   pari_sp av = avma;
    4233      109431 :   ulong n = Flx_constant(P)+1;
    4234      109429 :   GEN z = Flx_neg(Flx_shift(P, -1), p);
    4235      109425 :   GEN Q = Flxn_recip(Flxn_expint(z, n, p), n);
    4236      109404 :   return gc_uptoleaf(av, Q);
    4237             : }
    4238             : 
    4239             : static void
    4240       12514 : init_invlaplace(long d, ulong p, GEN *pt_P, GEN *pt_V)
    4241             : {
    4242             :   long i;
    4243             :   ulong e;
    4244       12514 :   GEN P = cgetg(d+1, t_VECSMALL);
    4245       12514 :   GEN V = cgetg(d+1, t_VECSMALL);
    4246     1396581 :   for (i=1, e=1; i<=d; i++, e++)
    4247             :   {
    4248     1384067 :     if (e==p)
    4249             :     {
    4250      459153 :       e = 0;
    4251      459153 :       V[i] = u_lvalrem(i, p, &uel(P,i));
    4252             :     } else
    4253             :     {
    4254      924914 :       V[i] = 0; uel(P,i) = i;
    4255             :     }
    4256             :   }
    4257       12514 :   *pt_P = P; *pt_V = V;
    4258       12514 : }
    4259             : 
    4260             : /* return p^val * FpX_invLaplace(1+x+...x^(n-1), q), with q a power of p and
    4261             :  * val large enough to compensate for the power of p in the factorials */
    4262             : 
    4263             : static GEN
    4264         497 : ZpX_invLaplace_init(long n, GEN q, ulong p, long v, long sv)
    4265             : {
    4266         497 :   pari_sp av = avma;
    4267         497 :   long i, d = n-1, w;
    4268             :   GEN y, W, E, t;
    4269         497 :   init_invlaplace(d, p, &E, &W);
    4270         497 :   t = Fp_inv(FpV_prod(Flv_to_ZV(E), q), q);
    4271         497 :   w = zv_sum(W);
    4272         497 :   if (v > w) t = Fp_mul(t, powuu(p, v-w), q);
    4273         497 :   y = cgetg(d+3,t_POL);
    4274         497 :   y[1] = evalsigne(1) | sv;
    4275       28882 :   for (i=d; i>=1; i--)
    4276             :   {
    4277       28385 :     gel(y,i+2) = t;
    4278       28385 :     t = Fp_mulu(t, uel(E,i), q);
    4279       28385 :     if (uel(W,i)) t = Fp_mul(t, powuu(p, uel(W,i)), q);
    4280             :   }
    4281         497 :   gel(y,2) = t;
    4282         497 :   return gc_GEN(av, ZX_renormalize(y, d+3));
    4283             : }
    4284             : 
    4285             : GEN
    4286       27580 : Flx_composedsum(GEN P, GEN Q, ulong p)
    4287             : {
    4288       27580 :   pari_sp av = avma;
    4289       27580 :   long n = 1 + degpol(P)*degpol(Q);
    4290       27575 :   ulong lead = Fl_mul(Fl_powu(Flx_lead(P), degpol(Q), p),
    4291       27576 :                       Fl_powu(Flx_lead(Q), degpol(P), p), p);
    4292             :   GEN R;
    4293       27576 :   if (p >= (ulong)n)
    4294             :   {
    4295       27079 :     GEN Pl = Flx_invLaplace(Flx_Newton(P,n,p), p);
    4296       27085 :     GEN Ql = Flx_invLaplace(Flx_Newton(Q,n,p), p);
    4297       27088 :     GEN L  = Flx_Laplace(Flxn_mul(Pl, Ql, n, p), p);
    4298       27087 :     R = Flx_fromNewton(L, p);
    4299             :   } else
    4300             :   {
    4301         497 :     long v = factorial_lval(n-1, p);
    4302         497 :     long w = 1 + ulogint(n-1, p);
    4303         497 :     GEN pv = powuu(p, v);
    4304         497 :     GEN qf = powuu(p, w), q = mulii(pv, qf), q2 = mulii(q, pv);
    4305         497 :     GEN iL = ZpX_invLaplace_init(n, q, p, v, P[1]);
    4306         497 :     GEN Pl = FpX_convol(iL, FpX_Newton(Flx_to_ZX(P), n, qf), q);
    4307         497 :     GEN Ql = FpX_convol(iL, FpX_Newton(Flx_to_ZX(Q), n, qf), q);
    4308         497 :     GEN Ln = ZX_Z_divexact(FpXn_mul(Pl, Ql, n, q2), pv);
    4309         497 :     GEN L  = ZX_Z_divexact(FpX_Laplace(Ln, q), pv);
    4310         497 :     R = ZX_to_Flx(FpX_fromNewton(L, qf), p);
    4311             :   }
    4312       27564 :   return gc_uptoleaf(av, Flx_Fl_mul(R, lead, p));
    4313             : }
    4314             : 
    4315             : static GEN
    4316        3910 : _Flx_composedsum(void *E, GEN a, GEN b)
    4317        3910 : { return Flx_composedsum(a, b, (ulong)E); }
    4318             : 
    4319             : GEN
    4320       28994 : FlxV_composedsum(GEN V, ulong p)
    4321       28994 : { return gen_product(V, (void *)p, &_Flx_composedsum); }
    4322             : 
    4323             : GEN
    4324           0 : Flx_composedprod(GEN P, GEN Q, ulong p)
    4325             : {
    4326           0 :   pari_sp av = avma;
    4327           0 :   long n = 1+ degpol(P)*degpol(Q);
    4328           0 :   ulong lead = Fl_mul(Fl_powu(Flx_lead(P), degpol(Q), p),
    4329           0 :                       Fl_powu(Flx_lead(Q), degpol(P), p), p);
    4330             :   GEN R;
    4331           0 :   if (p >= (ulong)n)
    4332             :   {
    4333           0 :     GEN L = Flx_convol(Flx_Newton(P,n,p), Flx_Newton(Q,n,p), p);
    4334           0 :     R = Flx_fromNewton(L, p);
    4335             :   } else
    4336             :   {
    4337           0 :     long w = 1 + ulogint(n, p);
    4338           0 :     GEN qf = powuu(p, w);
    4339           0 :     GEN Pl = FpX_convol(FpX_Newton(Flx_to_ZX(P), n, qf), FpX_Newton(Flx_to_ZX(Q), n, qf), qf);
    4340           0 :     R = ZX_to_Flx(FpX_fromNewton(Pl, qf), p);
    4341             :   }
    4342           0 :   return gc_uptoleaf(av, Flx_Fl_mul(R, lead, p));
    4343             : 
    4344             : }
    4345             : 
    4346             : /* (x+1)^n mod p; assume 2 <= n < 2p prime */
    4347             : static GEN
    4348           0 : Fl_Xp1_powu(ulong n, ulong p, long v)
    4349             : {
    4350           0 :   ulong k, d = (n + 1) >> 1;
    4351           0 :   GEN C, V = identity_zv(d);
    4352             : 
    4353           0 :   Flv_inv_inplace(V, p); /* could restrict to odd integers in [3,d] */
    4354           0 :   C = cgetg(n+3, t_VECSMALL);
    4355           0 :   C[1] = v;
    4356           0 :   uel(C,2) = 1UL;
    4357           0 :   uel(C,3) = n%p;
    4358           0 :   uel(C,4) = Fl_mul(odd(n)? n: n-1, n >> 1, p);
    4359             :     /* binom(n,k) = binom(n,k-1) * (n-k+1) / k */
    4360           0 :   if (SMALL_ULONG(p))
    4361           0 :     for (k = 3; k <= d; k++)
    4362           0 :       uel(C,k+2) = Fl_mul(Fl_mul(n-k+1, uel(C,k+1), p), uel(V,k), p);
    4363             :   else
    4364             :   {
    4365           0 :     ulong pi  = get_Fl_red(p);
    4366           0 :     for (k = 3; k <= d; k++)
    4367           0 :       uel(C,k+2) = Fl_mul_pre(Fl_mul(n-k+1, uel(C,k+1), p), uel(V,k), p, pi);
    4368             :   }
    4369           0 :   for (   ; k <= n; k++) uel(C,2+k) = uel(C,2+n-k);
    4370           0 :   return C; /* normalized */
    4371             : }
    4372             : 
    4373             : /* p arbitrary */
    4374             : GEN
    4375       28236 : Flx_translate1_basecase(GEN P, ulong p)
    4376             : {
    4377       28236 :   GEN R = Flx_copy(P);
    4378       28236 :   long i, k, n = degpol(P);
    4379      654893 :   for (i = 1; i <= n; i++)
    4380    14846873 :     for (k = n-i; k < n; k++) uel(R,k+2) = Fl_add(uel(R,k+2), uel(R,k+3), p);
    4381       28236 :   return R;
    4382             : }
    4383             : 
    4384             : static int
    4385       41401 : translate_basecase(long n, ulong p)
    4386             : {
    4387             : #ifdef LONG_IS_64BIT
    4388       36102 :   if (p <= 19) return n < 40;
    4389       29910 :   if (p < 1UL<<30) return n < 58;
    4390           0 :   if (p < 1UL<<59) return n < 100;
    4391           0 :   if (p < 1UL<<62) return n < 120;
    4392           0 :   if (p < 1UL<<63) return n < 240;
    4393           0 :   return n < 250;
    4394             : #else
    4395        5299 :   if (p <= 13) return n < 18;
    4396        4136 :   if (p <= 17) return n < 22;
    4397        4078 :   if (p <= 29) return n < 39;
    4398        3886 :   if (p <= 67) return n < 69;
    4399        3667 :   if (p < 1UL<< 15) return n < 80;
    4400        2047 :   if (p < 1UL<< 16) return n < 100;
    4401           0 :   if (p < 1UL<< 28) return n < 300;
    4402           0 :   return n < 650;
    4403             : #endif
    4404             : }
    4405             : /* assume p prime */
    4406             : GEN
    4407       16142 : Flx_translate1(GEN P, ulong p)
    4408             : {
    4409       16142 :   long d, n = degpol(P);
    4410             :   GEN R, Q, S;
    4411       16142 :   if (translate_basecase(n, p)) return Flx_translate1_basecase(P, p);
    4412             :   /* n > 0 */
    4413        1148 :   d = n >> 1;
    4414        1148 :   if ((ulong)n < p)
    4415             :   {
    4416           0 :     R = Flx_translate1(Flxn_red(P, d), p);
    4417           0 :     Q = Flx_translate1(Flx_shift(P, -d), p);
    4418           0 :     S = Fl_Xp1_powu(d, p, P[1]);
    4419           0 :     return Flx_add(Flx_mul(Q, S, p), R, p);
    4420             :   }
    4421             :   else
    4422             :   {
    4423             :     ulong q;
    4424        1148 :     if ((ulong)d > p) (void)ulogintall(d, p, &q); else q = p;
    4425        1148 :     R = Flx_translate1(Flxn_red(P, q), p);
    4426        1148 :     Q = Flx_translate1(Flx_shift(P, -q), p);
    4427        1148 :     S = Flx_add(Flx_shift(Q, q), Q, p);
    4428        1148 :     return Flx_add(S, R, p); /* P(x+1) = Q(x+1) (x^q+1) + R(x+1) */
    4429             :   }
    4430             : }
    4431             : 
    4432             : GEN
    4433           0 : Flx_translate(GEN P, ulong c, ulong p)
    4434             : {
    4435           0 :   pari_sp av = avma;
    4436             :   GEN Q;
    4437           0 :   if (c==0) return Flx_copy(P);
    4438           0 :   if (c==1) return Flx_translate1(P, p);
    4439           0 :   Q = Flx_unscale(Flx_translate1(Flx_unscale(P, c, p), p), Fl_inv(c, p), p);
    4440           0 :   return gc_uptoleaf(av, Q);
    4441             : }
    4442             : 
    4443             : static GEN
    4444       12017 : zl_Xp1_powu(ulong n, ulong p, ulong q, long e, long vs)
    4445             : {
    4446       12017 :   ulong k, d = n >> 1, c, v = 0;
    4447       12017 :   GEN C, V, W, U = upowers(p, e-1);
    4448       12017 :   init_invlaplace(d, p, &V, &W);
    4449       12017 :   Flv_inv_inplace(V, q);
    4450       12017 :   C = cgetg(n+3, t_VECSMALL);
    4451       12017 :   C[1] = vs;
    4452       12017 :   uel(C,2) = 1UL;
    4453       12017 :   uel(C,3) = n%q;
    4454       12017 :   v = u_lvalrem(n, p, &c);
    4455     1355682 :   for (k = 2; k <= d; k++)
    4456             :   {
    4457             :     ulong w;
    4458     1343665 :     v += u_lvalrem(n-k+1, p, &w) - W[k];
    4459     1343665 :     c = Fl_mul(Fl_mul(w%q, c, q), uel(V,k), q);
    4460     1343665 :     uel(C,2+k) = v >= (ulong)e ? 0: v==0 ? c : Fl_mul(c, uel(U, v+1), q);
    4461             :   }
    4462     1374521 :   for (   ; k <= n; k++) uel(C,2+k) = uel(C,2+n-k);
    4463       12017 :   return C; /* normalized */
    4464             : }
    4465             : 
    4466             : GEN
    4467       25259 : zlx_translate1(GEN P, ulong p, long e)
    4468             : {
    4469       25259 :   ulong d, q = upowuu(p,e), n = degpol(P);
    4470             :   GEN R, Q, S;
    4471       25259 :   if (translate_basecase(n, q)) return Flx_translate1_basecase(P, q);
    4472             :   /* n > 0 */
    4473       12017 :   d = n >> 1;
    4474       12017 :   R = zlx_translate1(Flxn_red(P, d), p, e);
    4475       12017 :   Q = zlx_translate1(Flx_shift(P, -d), p, e);
    4476       12017 :   S = zl_Xp1_powu(d, p, q, e, P[1]);
    4477       12017 :   return Flx_add(Flx_mul(Q, S, q), R, q);
    4478             : }
    4479             : 
    4480             : /***********************************************************************/
    4481             : /**                               Fl2                                 **/
    4482             : /***********************************************************************/
    4483             : /* Fl2 objects are Flv of length 2 [a,b] representing a+bsqrt(D) for
    4484             :  * a nonsquare D. */
    4485             : 
    4486             : INLINE GEN
    4487     7198358 : mkF2(ulong a, ulong b) { return mkvecsmall2(a,b); }
    4488             : 
    4489             : /* allow pi = 0 */
    4490             : GEN
    4491     1918642 : Fl2_mul_pre(GEN x, GEN y, ulong D, ulong p, ulong pi)
    4492             : {
    4493             :   ulong xaya, xbyb, Db2, mid, z1, z2;
    4494     1918642 :   ulong x1 = x[1], x2 = x[2], y1 = y[1], y2 = y[2];
    4495     1918642 :   if (pi)
    4496             :   {
    4497     1918655 :     xaya = Fl_mul_pre(x1,y1,p,pi);
    4498     1919236 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4499     1848670 :     if (x2==0) return mkF2(xaya,Fl_mul_pre(x1,y2,p,pi));
    4500     1824100 :     if (y2==0) return mkF2(xaya,Fl_mul_pre(x2,y1,p,pi));
    4501     1823896 :     xbyb = Fl_mul_pre(x2,y2,p,pi);
    4502     1823727 :     mid = Fl_mul_pre(Fl_add(x1,x2,p), Fl_add(y1,y2,p),p,pi);
    4503     1823937 :     Db2 = Fl_mul_pre(D, xbyb, p,pi);
    4504             :   }
    4505           0 :   else if (p & HIGHMASK)
    4506             :   {
    4507           0 :     xaya = Fl_mul(x1,y1,p);
    4508           0 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4509           0 :     if (x2==0) return mkF2(xaya,Fl_mul(x1,y2,p));
    4510           0 :     if (y2==0) return mkF2(xaya,Fl_mul(x2,y1,p));
    4511           0 :     xbyb = Fl_mul(x2,y2,p);
    4512           0 :     mid = Fl_mul(Fl_add(x1,x2,p), Fl_add(y1,y2,p),p);
    4513           0 :     Db2 = Fl_mul(D, xbyb, p);
    4514             :   }
    4515             :   else
    4516             :   {
    4517           0 :     xaya = (x1 * y1) % p;
    4518           0 :     if (x2==0 && y2==0) return mkF2(xaya,0);
    4519           0 :     if (x2==0) return mkF2(xaya, (x1 * y2) % p);
    4520           0 :     if (y2==0) return mkF2(xaya, (x2 * y1) % p);
    4521           0 :     xbyb = (x2 * y2) % p;
    4522           0 :     mid = (Fl_add(x1,x2,p) * Fl_add(y1,y2,p)) % p;
    4523           0 :     Db2 = (D * xbyb) % p;
    4524             :   }
    4525     1823820 :   z1 = Fl_add(xaya,Db2,p);
    4526     1823799 :   z2 = Fl_sub(mid,Fl_add(xaya,xbyb,p),p);
    4527     1823807 :   return mkF2(z1,z2);
    4528             : }
    4529             : 
    4530             : /* allow pi = 0 */
    4531             : GEN
    4532     4827880 : Fl2_sqr_pre(GEN x, ulong D, ulong p, ulong pi)
    4533             : {
    4534     4827880 :   ulong a = x[1], b = x[2];
    4535             :   ulong a2, Db2, ab;
    4536     4827880 :   if (pi)
    4537             :   {
    4538     4827906 :     a2 = Fl_sqr_pre(a,p,pi);
    4539     4830491 :     if (b==0) return mkF2(a2,0);
    4540     4614947 :     Db2= Fl_mul_pre(D, Fl_sqr_pre(b,p,pi), p,pi);
    4541     4615057 :     ab = Fl_mul_pre(a,b,p,pi);
    4542             :   }
    4543           0 :   else if (p & HIGHMASK)
    4544             :   {
    4545           0 :     a2 = Fl_sqr(a,p);
    4546           0 :     if (b==0) return mkF2(a2,0);
    4547           0 :     Db2= Fl_mul(D, Fl_sqr(b,p), p);
    4548           0 :     ab = Fl_mul(a,b,p);
    4549             :   }
    4550             :   else
    4551             :   {
    4552           0 :     a2 = (a * a) % p;
    4553           0 :     if (b==0) return mkF2(a2,0);
    4554           0 :     Db2= (D * ((b * b) % p)) % p;
    4555           0 :     ab = (a * b) % p;
    4556             :   }
    4557     4614936 :   return mkF2(Fl_add(a2,Db2,p), Fl_double(ab,p));
    4558             : }
    4559             : 
    4560             : /* allow pi = 0 */
    4561             : ulong
    4562      124336 : Fl2_norm_pre(GEN x, ulong D, ulong p, ulong pi)
    4563             : {
    4564      124336 :   ulong a = x[1], b = x[2], a2;
    4565      124336 :   if (pi)
    4566             :   {
    4567       72457 :     a2 = Fl_sqr_pre(a,p,pi);
    4568       72458 :     return b? Fl_sub(a2, Fl_mul_pre(D, Fl_sqr_pre(b, p,pi), p,pi), p): a2;
    4569             :   }
    4570       51879 :   else if (p & HIGHMASK)
    4571             :   {
    4572           0 :     a2 = Fl_sqr(a,p);
    4573           0 :     return b? Fl_sub(a2, Fl_mul(D, Fl_sqr(b, p), p), p): a2;
    4574             :   }
    4575             :   else
    4576             :   {
    4577       51879 :     a2 = (a * a) % p;
    4578       51879 :     return b? Fl_sub(a2, (D * ((b * b) % p)) % p, p): a2;
    4579             :   }
    4580             : }
    4581             : 
    4582             : /* allow pi = 0 */
    4583             : GEN
    4584      193781 : Fl2_inv_pre(GEN x, ulong D, ulong p, ulong pi)
    4585             : {
    4586      193781 :   ulong a = x[1], b = x[2], n, ni;
    4587      193781 :   if (b == 0) return mkF2(Fl_inv(a,p), 0);
    4588      162316 :   b = Fl_neg(b, p);
    4589      162318 :   if (pi)
    4590             :   {
    4591      162318 :     n = Fl_sub(Fl_sqr_pre(a, p,pi),
    4592             :                Fl_mul_pre(D, Fl_sqr_pre(b, p,pi), p,pi), p);
    4593      162321 :     ni = Fl_inv(n,p);
    4594      162322 :     return mkF2(Fl_mul_pre(a, ni, p,pi), Fl_mul_pre(b, ni, p,pi));
    4595             :   }
    4596           0 :   else if (p & HIGHMASK)
    4597             :   {
    4598           0 :     n = Fl_sub(Fl_sqr(a, p), Fl_mul(D, Fl_sqr(b, p), p), p);
    4599           0 :     ni = Fl_inv(n,p);
    4600           0 :     return mkF2(Fl_mul(a, ni, p), Fl_mul(b, ni, p));
    4601             :   }
    4602             :   else
    4603             :   {
    4604           0 :     n = Fl_sub((a * a) % p, (D * ((b * b) % p)) % p, p);
    4605           0 :     ni = Fl_inv(n,p);
    4606           0 :     return mkF2((a * ni) % p, (b * ni) % p);
    4607             :   }
    4608             : }
    4609             : 
    4610             : int
    4611      442399 : Fl2_equal1(GEN x) { return x[1]==1 && x[2]==0; }
    4612             : 
    4613             : struct _Fl2 {
    4614             :   ulong p, pi, D;
    4615             : };
    4616             : 
    4617             : static GEN
    4618     4827891 : _Fl2_sqr(void *data, GEN x)
    4619             : {
    4620     4827891 :   struct _Fl2 *D = (struct _Fl2*)data;
    4621     4827891 :   return Fl2_sqr_pre(x, D->D, D->p, D->pi);
    4622             : }
    4623             : static GEN
    4624     1890223 : _Fl2_mul(void *data, GEN x, GEN y)
    4625             : {
    4626     1890223 :   struct _Fl2 *D = (struct _Fl2*)data;
    4627     1890223 :   return Fl2_mul_pre(x,y, D->D, D->p, D->pi);
    4628             : }
    4629             : 
    4630             : /* n-Power of x in Z/pZ[X]/(T), as t_VECSMALL; allow pi = 0 */
    4631             : GEN
    4632      659803 : Fl2_pow_pre(GEN x, GEN n, ulong D, ulong p, ulong pi)
    4633             : {
    4634      659803 :   pari_sp av = avma;
    4635             :   struct _Fl2 d;
    4636             :   GEN y;
    4637      659803 :   long s = signe(n);
    4638      659803 :   if (!s) return mkF2(1,0);
    4639      585785 :   if (s < 0)
    4640      193781 :     x = Fl2_inv_pre(x,D,p,pi);
    4641      585785 :   if (is_pm1(n)) return s < 0 ? x : zv_copy(x);
    4642      431466 :   d.p = p; d.pi = pi; d.D=D;
    4643      431466 :   y = gen_pow_i(x, n, (void*)&d, &_Fl2_sqr, &_Fl2_mul);
    4644      431483 :   return gc_uptoleaf(av, y);
    4645             : }
    4646             : 
    4647             : static GEN
    4648      659795 : _Fl2_pow(void *data, GEN x, GEN n)
    4649             : {
    4650      659795 :   struct _Fl2 *D = (struct _Fl2*)data;
    4651      659795 :   return Fl2_pow_pre(x, n, D->D, D->p, D->pi);
    4652             : }
    4653             : 
    4654             : static GEN
    4655      111347 : _Fl2_rand(void *data)
    4656             : {
    4657      111347 :   struct _Fl2 *D = (struct _Fl2*)data;
    4658      111347 :   ulong a = random_Fl(D->p), b=random_Fl(D->p-1)+1;
    4659      111347 :   return mkF2(a,b);
    4660             : }
    4661             : 
    4662             : GEN
    4663       65765 : Fl2_sqrt_pre(GEN z, ulong D, ulong p, ulong pi)
    4664             : {
    4665       65765 :   ulong a = uel(z,1), b = uel(z,2), as2, u, v, s;
    4666       65765 :   ulong y = Fl_2gener_pre_i(D, p, pi);
    4667       65765 :   if (b == 0)
    4668       18930 :     return krouu(a, p)==1 ? mkF2(Fl_sqrt_pre_i(a, y, p, pi), 0)
    4669       18930 :                           : mkF2(0, Fl_sqrt_pre_i(Fl_div(a, D, p), y, p, pi));
    4670       52709 :   s = Fl_sqrt_pre_i(Fl2_norm_pre(z, D, p, pi), y, p, pi);
    4671       52709 :   if (s==~0UL) return NULL;
    4672       49535 :   as2 = Fl_halve(Fl_add(a, s, p), p);
    4673       49535 :   if (krouu(as2, p)==-1) as2 = Fl_sub(as2, s, p);
    4674       49535 :   u = Fl_sqrt_pre_i(as2, y, p, pi);
    4675       49535 :   v = Fl_div(b, Fl_double(u, p), p);
    4676       49535 :   return mkF2(u,v);
    4677             : }
    4678             : 
    4679             : static const struct bb_group Fl2_star={_Fl2_mul, _Fl2_pow, _Fl2_rand,
    4680             :        hash_GEN, zv_equal, Fl2_equal1, NULL};
    4681             : 
    4682             : /* allow pi = 0 */
    4683             : GEN
    4684       74017 : Fl2_sqrtn_pre(GEN a, GEN n, ulong D, ulong p, ulong pi, GEN *zeta)
    4685             : {
    4686             :   struct _Fl2 E;
    4687             :   GEN o;
    4688       74017 :   if (a[1]==0 && a[2]==0)
    4689             :   {
    4690           0 :     if (signe(n) < 0) pari_err_INV("Flxq_sqrtn",a);
    4691           0 :     if (zeta) *zeta=mkF2(1,0);
    4692           0 :     return zv_copy(a);
    4693             :   }
    4694       74017 :   E.p=p; E.pi = pi; E.D = D;
    4695       74017 :   o = subiu(powuu(p,2), 1);
    4696       74015 :   return gen_Shanks_sqrtn(a,n,o,zeta,(void*)&E,&Fl2_star);
    4697             : }
    4698             : 
    4699             : /* allow pi = 0 */
    4700             : GEN
    4701       10528 : Flx_Fl2_eval_pre(GEN x, GEN y, ulong D, ulong p, ulong pi)
    4702             : {
    4703             :   GEN p1;
    4704       10528 :   long i = lg(x)-1;
    4705       10528 :   if (i <= 2)
    4706        2086 :     return mkF2(i == 2? x[2]: 0, 0);
    4707        8442 :   p1 = mkF2(x[i], 0);
    4708       36876 :   for (i--; i>=2; i--)
    4709             :   {
    4710       28434 :     p1 = Fl2_mul_pre(p1, y, D, p, pi);
    4711       28434 :     uel(p1,1) = Fl_add(uel(p1,1), uel(x,i), p);
    4712             :   }
    4713        8442 :   return p1;
    4714             : }
    4715             : 
    4716             : /***********************************************************************/
    4717             : /**                               FlxV                                **/
    4718             : /***********************************************************************/
    4719             : /* FlxV are t_VEC with Flx coefficients. */
    4720             : 
    4721             : GEN
    4722       34482 : FlxV_Flc_mul(GEN V, GEN W, ulong p)
    4723             : {
    4724       34482 :   pari_sp ltop=avma;
    4725             :   long i;
    4726       34482 :   GEN z = Flx_Fl_mul(gel(V,1),W[1],p);
    4727      257068 :   for(i=2;i<lg(V);i++)
    4728      222586 :     z=Flx_add(z,Flx_Fl_mul(gel(V,i),W[i],p),p);
    4729       34482 :   return gc_uptoleaf(ltop,z);
    4730             : }
    4731             : 
    4732             : GEN
    4733           0 : ZXV_to_FlxV(GEN x, ulong p)
    4734           0 : { pari_APPLY_type(t_VEC, ZX_to_Flx(gel(x,i), p)) }
    4735             : 
    4736             : GEN
    4737     3795049 : ZXT_to_FlxT(GEN x, ulong p)
    4738             : {
    4739     3795049 :   if (typ(x) == t_POL)
    4740     3736164 :     return ZX_to_Flx(x, p);
    4741             :   else
    4742      193292 :     pari_APPLY_type(t_VEC, ZXT_to_FlxT(gel(x,i), p))
    4743             : }
    4744             : 
    4745             : GEN
    4746      171876 : FlxV_to_Flm(GEN x, long n)
    4747      927560 : { pari_APPLY_type(t_MAT, Flx_to_Flv(gel(x,i), n)) }
    4748             : 
    4749             : GEN
    4750           0 : FlxV_red(GEN x, ulong p)
    4751           0 : { pari_APPLY_type(t_VEC, Flx_red(gel(x,i), p)) }
    4752             : 
    4753             : GEN
    4754      296614 : FlxT_red(GEN x, ulong p)
    4755             : {
    4756      296614 :   if (typ(x) == t_VECSMALL)
    4757      199541 :     return Flx_red(x, p);
    4758             :   else
    4759      325444 :     pari_APPLY_type(t_VEC, FlxT_red(gel(x,i), p))
    4760             : }
    4761             : 
    4762             : GEN
    4763      113589 : FlxqV_dotproduct_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
    4764             : {
    4765      113589 :   long i, lx = lg(x);
    4766             :   pari_sp av;
    4767             :   GEN c;
    4768      113589 :   if (lx == 1) return pol0_Flx(get_Flx_var(T));
    4769      113589 :   av = avma; c = Flx_mul_pre(gel(x,1),gel(y,1), p, pi);
    4770      464499 :   for (i=2; i<lx; i++) c = Flx_add(c, Flx_mul_pre(gel(x,i),gel(y,i), p, pi), p);
    4771      113589 :   return gc_uptoleaf(av, Flx_rem_pre(c,T,p,pi));
    4772             : }
    4773             : GEN
    4774           0 : FlxqV_dotproduct(GEN x, GEN y, GEN T, ulong p)
    4775           0 : { return FlxqV_dotproduct_pre(x, y, T, p, SMALL_ULONG(p)? 0: get_Fl_red(p)); }
    4776             : 
    4777             : GEN
    4778        1918 : FlxqX_dotproduct(GEN x, GEN y, GEN T, ulong p)
    4779             : {
    4780        1918 :   long i, l = minss(lg(x), lg(y));
    4781             :   ulong pi;
    4782             :   pari_sp av;
    4783             :   GEN c;
    4784        1918 :   if (l == 2) return pol0_Flx(get_Flx_var(T));
    4785        1905 :   av = avma; pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    4786        1905 :   c = Flx_mul_pre(gel(x,2),gel(y,2), p, pi);
    4787        6202 :   for (i=3; i<l; i++) c = Flx_add(c, Flx_mul_pre(gel(x,i),gel(y,i), p, pi), p);
    4788        1905 :   return gc_uptoleaf(av, Flx_rem_pre(c,T,p,pi));
    4789             : }
    4790             : 
    4791             : /* allow pi = 0 */
    4792             : GEN
    4793      254976 : FlxC_eval_powers_pre(GEN z, GEN x, ulong p, ulong pi)
    4794             : {
    4795      254976 :   long i, l = lg(z);
    4796      254976 :   GEN y = cgetg(l, t_VECSMALL);
    4797    12823477 :   for (i=1; i<l; i++) uel(y,i) = Flx_eval_powers_pre(gel(z,i), x, p, pi);
    4798      255017 :   return y;
    4799             : }
    4800             : 
    4801             : /***********************************************************************/
    4802             : /**                               FlxM                                **/
    4803             : /***********************************************************************/
    4804             : /* allow pi = 0 */
    4805             : GEN
    4806       20038 : FlxM_eval_powers_pre(GEN z, GEN x, ulong p, ulong pi)
    4807             : {
    4808       20038 :   long i, l = lg(z);
    4809       20038 :   GEN y = cgetg(l, t_MAT);
    4810      275014 :   for (i=1; i<l; i++) gel(y,i) = FlxC_eval_powers_pre(gel(z,i), x, p, pi);
    4811       20039 :   return y;
    4812             : }
    4813             : 
    4814             : GEN
    4815           0 : zero_FlxC(long n, long sv)
    4816             : {
    4817           0 :   GEN x = cgetg(n + 1, t_COL), z = zero_Flx(sv);
    4818             :   long i;
    4819           0 :   for (i = 1; i <= n; i++) gel(x, i) = z;
    4820           0 :   return x;
    4821             : }
    4822             : 
    4823             : GEN
    4824           0 : FlxC_neg(GEN x, ulong p)
    4825           0 : { pari_APPLY_type(t_COL, Flx_neg(gel(x, i), p)) }
    4826             : 
    4827             : GEN
    4828           0 : FlxC_sub(GEN x, GEN y, ulong p)
    4829           0 : { pari_APPLY_type(t_COL, Flx_sub(gel(x, i), gel(y, i), p)) }
    4830             : 
    4831             : GEN
    4832           0 : zero_FlxM(long r, long c, long sv)
    4833             : {
    4834           0 :   GEN x = cgetg(c + 1, t_MAT), z = zero_FlxC(r, sv);
    4835             :   long j;
    4836           0 :   for (j = 1; j <= c; j++) gel(x, j) = z;
    4837           0 :   return x;
    4838             : }
    4839             : 
    4840             : GEN
    4841           0 : FlxM_neg(GEN x, ulong p)
    4842           0 : { pari_APPLY_same(FlxC_neg(gel(x, i), p)) }
    4843             : 
    4844             : GEN
    4845           0 : FlxM_sub(GEN x, GEN y, ulong p)
    4846           0 : { pari_APPLY_same(FlxC_sub(gel(x, i), gel(y,i), p)) }
    4847             : 
    4848             : GEN
    4849           0 : FlxC_translate(GEN x, ulong c, ulong p)
    4850           0 : { pari_APPLY_type(t_COL, Flx_translate(gel(x,i), c, p)) }
    4851             : 
    4852             : GEN
    4853           0 : FlxM_translate(GEN x, ulong c, ulong p)
    4854           0 : { pari_APPLY_same(FlxC_translate(gel(x,i), c, p)) }
    4855             : 
    4856             : GEN
    4857      234845 : FlxqC_red_pre(GEN x, GEN T, ulong p, ulong pi)
    4858     4060693 : { pari_APPLY_type(t_COL, Flx_rem_pre(gel(x,i), T, p, pi)) }
    4859             : 
    4860             : GEN
    4861       81581 : FlxqM_red_pre(GEN x, GEN T, ulong p, ulong pi)
    4862      316426 : { pari_APPLY_same(FlxqC_red_pre(gel(x,i), T, p, pi)) }
    4863             : 
    4864             : GEN
    4865           0 : FlxqC_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
    4866           0 : { pari_APPLY_type(t_COL, Flxq_mul(gel(x, i), y, T, p)) }
    4867             : 
    4868             : GEN
    4869           0 : FlxqM_Flxq_mul(GEN x, GEN y, GEN T, ulong p)
    4870           0 : { pari_APPLY_same(FlxqC_Flxq_mul(gel(x, i), y, T, p)) }
    4871             : 
    4872             : static GEN
    4873       46835 : FlxM_pack_ZM(GEN M, GEN (*pack)(GEN, long)) {
    4874             :   long i, j, l, lc;
    4875       46835 :   GEN N = cgetg_copy(M, &l), x;
    4876       46835 :   if (l == 1)
    4877           0 :     return N;
    4878       46835 :   lc = lgcols(M);
    4879      205007 :   for (j = 1; j < l; j++) {
    4880      158172 :     gel(N, j) = cgetg(lc, t_COL);
    4881      902833 :     for (i = 1; i < lc; i++) {
    4882      744661 :       x = gcoeff(M, i, j);
    4883      744661 :       gcoeff(N, i, j) = pack(x + 2, lgpol(x));
    4884             :     }
    4885             :   }
    4886       46835 :   return N;
    4887             : }
    4888             : 
    4889             : static GEN
    4890      688104 : kron_pack_Flx_spec_half(GEN x, long l) {
    4891      688104 :   if (l == 0) return gen_0;
    4892      457528 :   return Flx_to_int_halfspec(x, l);
    4893             : }
    4894             : 
    4895             : static GEN
    4896       53168 : kron_pack_Flx_spec(GEN x, long l) {
    4897             :   long i;
    4898             :   GEN w, y;
    4899       53168 :   if (l == 0)
    4900        9964 :     return gen_0;
    4901       43204 :   y = cgetipos(l + 2);
    4902      157864 :   for (i = 0, w = int_LSW(y); i < l; i++, w = int_nextW(w))
    4903      114660 :     *w = x[i];
    4904       43204 :   return y;
    4905             : }
    4906             : 
    4907             : static GEN
    4908        3389 : kron_pack_Flx_spec_2(GEN x, long l) { return Flx_eval2BILspec(x, 2, l); }
    4909             : 
    4910             : static GEN
    4911           0 : kron_pack_Flx_spec_3(GEN x, long l) { return Flx_eval2BILspec(x, 3, l); }
    4912             : 
    4913             : static GEN
    4914       42785 : kron_unpack_Flx(GEN z, ulong p)
    4915             : {
    4916       42785 :   long i, l = lgefint(z);
    4917       42785 :   GEN x = cgetg(l, t_VECSMALL), w;
    4918      201296 :   for (w = int_LSW(z), i = 2; i < l; w = int_nextW(w), i++)
    4919      158511 :     x[i] = ((ulong) *w) % p;
    4920       42785 :   return Flx_renormalize(x, l);
    4921             : }
    4922             : 
    4923             : static GEN
    4924        2930 : kron_unpack_Flx_2(GEN x, ulong p) {
    4925        2930 :   long d = (lgefint(x)-1)/2 - 1;
    4926        2930 :   return Z_mod2BIL_Flx_2(x, d, p);
    4927             : }
    4928             : 
    4929             : static GEN
    4930           0 : kron_unpack_Flx_3(GEN x, ulong p) {
    4931           0 :   long d = lgefint(x)/3 - 1;
    4932           0 :   return Z_mod2BIL_Flx_3(x, d, p);
    4933             : }
    4934             : 
    4935             : static GEN
    4936      116239 : FlxM_pack_ZM_bits(GEN M, long b)
    4937             : {
    4938             :   long i, j, l, lc;
    4939      116239 :   GEN N = cgetg_copy(M, &l), x;
    4940      116239 :   if (l == 1)
    4941           0 :     return N;
    4942      116239 :   lc = lgcols(M);
    4943      479672 :   for (j = 1; j < l; j++) {
    4944      363433 :     gel(N, j) = cgetg(lc, t_COL);
    4945     5955086 :     for (i = 1; i < lc; i++) {
    4946     5591653 :       x = gcoeff(M, i, j);
    4947     5591653 :       gcoeff(N, i, j) = kron_pack_Flx_spec_bits(x + 2, b, lgpol(x));
    4948             :     }
    4949             :   }
    4950      116239 :   return N;
    4951             : }
    4952             : 
    4953             : static GEN
    4954       23421 : ZM_unpack_FlxM(GEN M, ulong p, ulong sv, GEN (*unpack)(GEN, ulong))
    4955             : {
    4956             :   long i, j, l, lc;
    4957       23421 :   GEN N = cgetg_copy(M, &l), x;
    4958       23421 :   if (l == 1)
    4959           0 :     return N;
    4960       23421 :   lc = lgcols(M);
    4961      111236 :   for (j = 1; j < l; j++) {
    4962       87815 :     gel(N, j) = cgetg(lc, t_COL);
    4963      634989 :     for (i = 1; i < lc; i++) {
    4964      547174 :       x = unpack(gcoeff(M, i, j), p);
    4965      547174 :       x[1] = sv;
    4966      547174 :       gcoeff(N, i, j) = x;
    4967             :     }
    4968             :   }
    4969       23421 :   return N;
    4970             : }
    4971             : 
    4972             : static GEN
    4973       58160 : ZM_unpack_FlxM_bits(GEN M, long b, ulong p, ulong pi, long sv)
    4974             : {
    4975             :   long i, j, l, lc;
    4976       58160 :   GEN N = cgetg_copy(M, &l), x;
    4977       58160 :   if (l == 1)
    4978           0 :     return N;
    4979       58160 :   lc = lgcols(M);
    4980       58160 :   if (b < BITS_IN_LONG) {
    4981      195346 :     for (j = 1; j < l; j++) {
    4982      138869 :       gel(N, j) = cgetg(lc, t_COL);
    4983     3250343 :       for (i = 1; i < lc; i++) {
    4984     3111474 :         x = kron_unpack_Flx_bits_narrow(gcoeff(M, i, j), b, p);
    4985     3111474 :         x[1] = sv;
    4986     3111474 :         gcoeff(N, i, j) = x;
    4987             :       }
    4988             :     }
    4989             :   } else {
    4990        1683 :     if (!pi) pi = get_Fl_red(p); /* unset if !SMALL_ULONG(p) */
    4991        9844 :     for (j = 1; j < l; j++) {
    4992        8161 :       gel(N, j) = cgetg(lc, t_COL);
    4993      175361 :       for (i = 1; i < lc; i++) {
    4994      167200 :         x = kron_unpack_Flx_bits_wide(gcoeff(M, i, j), b, p, pi);
    4995      167200 :         x[1] = sv;
    4996      167200 :         gcoeff(N, i, j) = x;
    4997             :       }
    4998             :     }
    4999             :   }
    5000       58160 :   return N;
    5001             : }
    5002             : 
    5003             : static GEN
    5004       81581 : FlxM_mul_Kronecker_i(GEN A, GEN B, ulong p, ulong pi, long d, long sv)
    5005             : {
    5006       81581 :   long b, n = lg(A) - 1;
    5007             :   GEN C, z;
    5008             :   GEN (*pack)(GEN, long), (*unpack)(GEN, ulong);
    5009       81581 :   int is_sqr = A==B;
    5010             : 
    5011       81581 :   z = muliu(muliu(sqru(p - 1), d), n);
    5012       81581 :   b = expi(z) + 1;
    5013             :   /* only do expensive bit-packing if it saves at least 1 limb */
    5014       81581 :   if (b <= BITS_IN_HALFULONG)
    5015       77198 :   { if (nbits2nlong(d*b) == (d + 1)/2) b = BITS_IN_HALFULONG; }
    5016             :   else
    5017             :   {
    5018        4383 :     long l = lgefint(z) - 2;
    5019        4383 :     if (nbits2nlong(d*b) == d*l) b = l*BITS_IN_LONG;
    5020             :   }
    5021             : 
    5022       81581 :   switch (b) {
    5023       22410 :   case BITS_IN_HALFULONG:
    5024       22410 :     pack = kron_pack_Flx_spec_half;
    5025       22410 :     unpack = int_to_Flx_half;
    5026       22410 :     break;
    5027         962 :   case BITS_IN_LONG:
    5028         962 :     pack = kron_pack_Flx_spec;
    5029         962 :     unpack = kron_unpack_Flx;
    5030         962 :     break;
    5031          49 :   case 2*BITS_IN_LONG:
    5032          49 :     pack = kron_pack_Flx_spec_2;
    5033          49 :     unpack = kron_unpack_Flx_2;
    5034          49 :     break;
    5035           0 :   case 3*BITS_IN_LONG:
    5036           0 :     pack = kron_pack_Flx_spec_3;
    5037           0 :     unpack = kron_unpack_Flx_3;
    5038           0 :     break;
    5039       58160 :   default:
    5040       58160 :     A = FlxM_pack_ZM_bits(A, b);
    5041       58160 :     B = is_sqr? A: FlxM_pack_ZM_bits(B, b);
    5042       58160 :     C = ZM_mul(A, B);
    5043       58160 :     return ZM_unpack_FlxM_bits(C, b, p, pi, sv);
    5044             :   }
    5045       23421 :   A = FlxM_pack_ZM(A, pack);
    5046       23421 :   B = is_sqr? A: FlxM_pack_ZM(B, pack);
    5047       23421 :   C = ZM_mul(A, B);
    5048       23421 :   return ZM_unpack_FlxM(C, p, sv, unpack);
    5049             : }
    5050             : 
    5051             : GEN
    5052       81581 : FlxqM_mul_Kronecker(GEN A, GEN B, GEN T, ulong p)
    5053             : {
    5054       81581 :   pari_sp av = avma;
    5055       81581 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    5056       81581 :   long sv = get_Flx_var(T), d = get_Flx_degree(T);
    5057       81581 :   GEN C = FlxM_mul_Kronecker_i(A, B, p, pi, d, sv);
    5058       81581 :   C = FlxqM_red_pre(C, T, p, pi);
    5059       81581 :   return gc_upto(av, C);
    5060             : }
    5061             : 
    5062             : /* assume m > 1 */
    5063             : static long
    5064           0 : FlxV_max_degree_i(GEN x, long m)
    5065             : {
    5066           0 :   long i, l = degpol(gel(x,1));
    5067           0 :   for (i = 2; i < m; i++) l = maxss(l, degpol(gel(x,i)));
    5068           0 :   return l;
    5069             : }
    5070             : 
    5071             : /* assume n > 1 and m > 1 */
    5072             : static long
    5073           0 : FlxM_max_degree_i(GEN x, long n, long m)
    5074             : {
    5075           0 :   long j, l = FlxV_max_degree_i(gel(x,1), m);
    5076           0 :   for (j = 2; j < n; j++) l = maxss(l, FlxV_max_degree_i(gel(x,j), m));
    5077           0 :   return l;
    5078             : }
    5079             : 
    5080             : static long
    5081           0 : FlxM_max_degree(GEN x)
    5082             : {
    5083           0 :   long n = lg(x), m;
    5084           0 :   if (n == 1) return -1;
    5085           0 :   m = lgcols(x); return m == 1? -1: FlxM_max_degree_i(x, n, m);
    5086             : }
    5087             : 
    5088             : GEN
    5089           0 : FlxM_mul(GEN x, GEN y, ulong p)
    5090             : {
    5091           0 :   pari_sp av = avma;
    5092           0 :   ulong pi = SMALL_ULONG(p)? 0: get_Fl_red(p);
    5093             :   long sv, d;
    5094           0 :   if (lg(x) == 1) return cgetg(1,t_MAT);
    5095           0 :   if (lg(gel(x,1))==1) return FlxqM_mul(x, y, NULL, p);
    5096           0 :   sv = mael3(x,1,1,1);
    5097           0 :   d = maxss(FlxM_max_degree(x), FlxM_max_degree(y));
    5098           0 :   return gc_GEN(av, FlxM_mul_Kronecker_i(x, y, p, pi, d+1, sv));
    5099             : }

Generated by: LCOV version 1.16