Code coverage tests

This page documents the degree to which the PARI/GP source code is tested by our public test suite, distributed with the source distribution in directory src/test/. This is measured by the gcov utility; we then process gcov output using the lcov frond-end.

We test a few variants depending on Configure flags on the pari.math.u-bordeaux.fr machine (x86_64 architecture), and agregate them in the final report:

The target is to exceed 90% coverage for all mathematical modules (given that branches depending on DEBUGLEVEL or DEBUGMEM are not covered). This script is run to produce the results below.

LCOV - code coverage report
Current view: top level - kernel/none - gcdext.c (source / functions) Hit Total Coverage
Test: PARI/GP v2.18.0 lcov report (development 29806-4d001396c7) Lines: 122 125 97.6 %
Date: 2024-12-21 09:08:57 Functions: 4 4 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : #line 2 "../src/kernel/none/gcdext.c"
       2             : /* Copyright (C) 2003  The PARI group.
       3             : 
       4             : This file is part of the PARI/GP package.
       5             : 
       6             : PARI/GP is free software; you can redistribute it and/or modify it under the
       7             : terms of the GNU General Public License as published by the Free Software
       8             : Foundation; either version 2 of the License, or (at your option) any later
       9             : version. It is distributed in the hope that it will be useful, but WITHOUT
      10             : ANY WARRANTY WHATSOEVER.
      11             : 
      12             : Check the License for details. You should have received a copy of it, along
      13             : with the package; see the file 'COPYING'. If not, write to the Free Software
      14             : Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
      15             : 
      16             : /*==================================
      17             :  * bezout(a,b,pu,pv)
      18             :  *==================================
      19             :  *    Return g = gcd(a,b) >= 0, and assign GENs u,v through pointers pu,pv
      20             :  *    such that g = u*a + v*b.
      21             :  * Special cases:
      22             :  *    a == b == 0 ==> pick u=1, v=0
      23             :  *    a != 0 == b ==> keep v=0
      24             :  *    a == 0 != b ==> keep u=0
      25             :  *    |a| == |b| != 0 ==> keep u=0, set v=+-1
      26             :  * Assignments through pu,pv will be suppressed when the corresponding
      27             :  * pointer is NULL  (but the computations will happen nonetheless).
      28             :  */
      29             : 
      30             : static GEN
      31    64536381 : bezout_lehmer(GEN a, GEN b, GEN *pu, GEN *pv)
      32             : {
      33             :   GEN t,u,u1,v,v1,d,d1,q,r;
      34             :   GEN *pt;
      35             :   pari_sp av, av1;
      36             :   long s, sa, sb;
      37             :   ulong g;
      38             :   ulong xu,xu1,xv,xv1;                /* Lehmer stage recurrence matrix */
      39             :   int lhmres;                        /* Lehmer stage return value */
      40             : 
      41    64536381 :   s = abscmpii(a,b);
      42    64536381 :   if (s < 0)
      43             :   {
      44    41450544 :     t=b; b=a; a=t;
      45    41450544 :     pt=pu; pu=pv; pv=pt;
      46             :   }
      47             :   /* now |a| >= |b| */
      48             : 
      49    64536381 :   sa = signe(a); sb = signe(b);
      50    64536381 :   if (!sb)
      51             :   {
      52     2277297 :     if (pv) *pv = gen_0;
      53     2277297 :     switch(sa)
      54             :     {
      55           3 :     case  0: if (pu) *pu = gen_0; return gen_0;
      56     2274477 :     case  1: if (pu) *pu = gen_1; return icopy(a);
      57        2817 :     case -1: if (pu) *pu = gen_m1; return(negi(a));
      58             :     }
      59             :   }
      60    62259084 :   if (s == 0)                        /* |a| == |b| != 0 */
      61             :   {
      62     7978992 :     if (pu) *pu = gen_0;
      63     7978992 :     if (sb > 0)
      64     7600932 :     { if (pv) *pv = gen_1; return icopy(b); }
      65             :     else
      66      378060 :     { if (pv) *pv = gen_m1; return(negi(b)); }
      67             :   }
      68             :   /* now |a| > |b| > 0 */
      69             : 
      70    54280092 :   if (lgefint(a) == 3)                /* single-word affair */
      71             :   {
      72    52325406 :     g = xxgcduu(uel(a,2), uel(b,2), 0, &xu, &xu1, &xv, &xv1, &s);
      73    52325406 :     sa = s > 0 ? sa : -sa;
      74    52325406 :     sb = s > 0 ? -sb : sb;
      75    52325406 :     if (pu)
      76             :     {
      77    26943297 :       if (xu == 0) *pu = gen_0; /* can happen when b divides a */
      78     9443439 :       else if (xu == 1) *pu = sa < 0 ? gen_m1 : gen_1;
      79     5284647 :       else if (xu == 2) *pu = sa < 0 ? gen_m2 : gen_2;
      80             :       else
      81             :       {
      82     4701858 :         *pu = cgeti(3);
      83     4701858 :         (*pu)[1] = evalsigne(sa)|evallgefint(3);
      84     4701858 :         (*pu)[2] = xu;
      85             :       }
      86             :     }
      87    52325406 :     if (pv)
      88             :     {
      89    48096495 :       if (xv == 1) *pv = sb < 0 ? gen_m1 : gen_1;
      90    20156706 :       else if (xv == 2) *pv = sb < 0 ? gen_m2 : gen_2;
      91             :       else
      92             :       {
      93    18260865 :         *pv = cgeti(3);
      94    18260865 :         (*pv)[1] = evalsigne(sb)|evallgefint(3);
      95    18260865 :         (*pv)[2] = xv;
      96             :       }
      97             :     }
      98    52325406 :     if      (g == 1) return gen_1;
      99    17848908 :     else if (g == 2) return gen_2;
     100    12395100 :     else return utoipos(g);
     101             :   }
     102             : 
     103             :   /* general case */
     104     1954686 :   av = avma;
     105     1954686 :   (void)new_chunk(lgefint(b) + (lgefint(a)<<1)); /* room for u,v,gcd */
     106             :   /* if a is significantly larger than b, calling lgcdii() is not the best
     107             :    * way to start -- reduce a mod b first
     108             :    */
     109     1954686 :   if (lgefint(a) > lgefint(b))
     110             :   {
     111     1478550 :     d = absi_shallow(b);
     112     1478550 :     q = dvmdii(absi_shallow(a), d, &d1);
     113     1478550 :     if (!signe(d1))                /* a == qb */
     114             :     {
     115     1253673 :       set_avma(av);
     116     1253673 :       if (pu) *pu = gen_0;
     117     1253673 :       if (pv) *pv = sb < 0 ? gen_m1 : gen_1;
     118     1253673 :       return icopy(d);
     119             :     }
     120             :     else
     121             :     {
     122      224877 :       u = gen_0;
     123      224877 :       u1 = v = gen_1;
     124      224877 :       v1 = negi(q);
     125             :     }
     126             :     /* if this results in lgefint(d) == 3, will fall past main loop */
     127             :   }
     128             :   else
     129             :   {
     130      476136 :     d = absi_shallow(a);
     131      476136 :     d1 = absi_shallow(b);
     132      476136 :     u = v1 = gen_1; u1 = v = gen_0;
     133             :   }
     134      701013 :   av1 = avma;
     135             : 
     136             :   /* main loop is almost identical to that of invmod() */
     137     2202237 :   while (lgefint(d) > 3 && signe(d1))
     138             :   {
     139     1501224 :     lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, ULONG_MAX);
     140     1501224 :     if (lhmres != 0)                /* check progress */
     141             :     {                                /* apply matrix */
     142     1131459 :       if ((lhmres == 1) || (lhmres == -1))
     143             :       {
     144       64851 :         if (xv1 == 1)
     145             :         {
     146       31446 :           r = subii(d,d1); d=d1; d1=r;
     147       31446 :           a = subii(u,u1); u=u1; u1=a;
     148       31446 :           a = subii(v,v1); v=v1; v1=a;
     149             :         }
     150             :         else
     151             :         {
     152       33405 :           r = subii(d, mului(xv1,d1)); d=d1; d1=r;
     153       33405 :           a = subii(u, mului(xv1,u1)); u=u1; u1=a;
     154       33405 :           a = subii(v, mului(xv1,v1)); v=v1; v1=a;
     155             :         }
     156             :       }
     157             :       else
     158             :       {
     159     1066608 :         r  = subii(muliu(d,xu),  muliu(d1,xv));
     160     1066608 :         d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
     161     1066608 :         a  = subii(muliu(u,xu),  muliu(u1,xv));
     162     1066608 :         u1 = subii(muliu(u,xu1), muliu(u1,xv1)); u = a;
     163     1066608 :         a  = subii(muliu(v,xu),  muliu(v1,xv));
     164     1066608 :         v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a;
     165     1066608 :         if (lhmres&1) { togglesign(d);  togglesign(u);  togglesign(v); }
     166      542589 :         else          { togglesign(d1); togglesign(u1); togglesign(v1); }
     167             :       }
     168             :     }
     169     1501224 :     if (lhmres <= 0 && signe(d1))
     170             :     {
     171      398358 :       q = dvmdii(d,d1,&r);
     172      398358 :       a = subii(u,mulii(q,u1));
     173      398358 :       u=u1; u1=a;
     174      398358 :       a = subii(v,mulii(q,v1));
     175      398358 :       v=v1; v1=a;
     176      398358 :       d=d1; d1=r;
     177             :     }
     178     1501224 :     if (gc_needed(av,1))
     179             :     {
     180           0 :       if(DEBUGMEM>1) pari_warn(warnmem,"bezout");
     181           0 :       gerepileall(av1,6, &d,&d1,&u,&u1,&v,&v1);
     182             :     }
     183             :   } /* end while */
     184             : 
     185             :   /* Postprocessing - final sprint */
     186      701013 :   if (signe(d1))
     187             :   {
     188             :     /* Assertions: lgefint(d)==lgefint(d1)==3, and
     189             :      * gcd(d,d1) is nonzero and fits into one word
     190             :      */
     191      329445 :     g = xxgcduu(uel(d,2), uel(d1,2), 0, &xu, &xu1, &xv, &xv1, &s);
     192      329445 :     u = subii(muliu(u,xu), muliu(u1, xv));
     193      329445 :     v = subii(muliu(v,xu), muliu(v1, xv));
     194      329445 :     if (s < 0) { sa = -sa; sb = -sb; }
     195      329445 :     set_avma(av);
     196      329445 :     if (pu) *pu = sa < 0 ? negi(u) : icopy(u);
     197      329445 :     if (pv) *pv = sb < 0 ? negi(v) : icopy(v);
     198      329445 :     if (g == 1) return gen_1;
     199      259911 :     else if (g == 2) return gen_2;
     200      243336 :     else return utoipos(g);
     201             :   }
     202             :   /* get here when the final sprint was skipped (d1 was zero already).
     203             :    * Now the matrix is final, and d contains the gcd.
     204             :    */
     205      371568 :   set_avma(av);
     206      371568 :   if (pu) *pu = sa < 0 ? negi(u) : icopy(u);
     207      371568 :   if (pv) *pv = sb < 0 ? negi(v) : icopy(v);
     208      371568 :   return icopy(d);
     209             : }
     210             : 
     211             : static GEN
     212         390 : addmulmul(GEN u, GEN v, GEN x, GEN y)
     213         390 : { return addii(mulii(u, x),mulii(v, y)); }
     214             : 
     215             : static GEN
     216         222 : bezout_halfgcd(GEN x, GEN y, GEN *ptu, GEN *ptv)
     217             : {
     218         222 :   pari_sp av=avma;
     219         222 :   GEN u, v, R = matid2();
     220         564 :   while (lgefint(y)-2 >= EXTGCD_HALFGCD_LIMIT)
     221             :   {
     222         342 :     GEN M = HGCD0(x,y);
     223         342 :     R = ZM2_mul(R, gel(M, 1));
     224         342 :     x = gel(M,2); y = gel(M,3);
     225         342 :     if (signe(y) && expi(y)<magic_threshold(x))
     226             :     {
     227         138 :       GEN r, q = dvmdii(x, y, &r);
     228         138 :       x = y; y = r;
     229         138 :       R = mulq(R, q);
     230             :     }
     231         342 :     if (gc_needed(av, 1))
     232           0 :       gerepileall(av,3,&x,&y,&R);
     233             :   }
     234         222 :   y = bezout_lehmer(x,y,&u,&v);
     235         222 :   R = ZM_inv2(R);
     236         222 :   if (ptu) *ptu = addmulmul(u,v,gcoeff(R,1,1),gcoeff(R,2,1));
     237         222 :   if (ptv) *ptv = addmulmul(u,v,gcoeff(R,1,2),gcoeff(R,2,2));
     238         222 :   return y;
     239             : }
     240             : 
     241             : GEN
     242    64536381 : bezout(GEN x, GEN y, GEN *ptu, GEN *ptv)
     243             : {
     244    64536381 :   pari_sp av = avma;
     245             :   GEN d;
     246    64536381 :   if (lgefint(y)-2 >= EXTGCD_HALFGCD_LIMIT)
     247         222 :     d = bezout_halfgcd(x, y, ptu, ptv);
     248             :   else
     249    64536159 :     d = bezout_lehmer(x, y, ptu, ptv);
     250    64536381 :   if (ptv) return gc_all(av,ptu?3:2, &d, ptv, ptu);
     251    33864600 :   return gc_all(av, ptu?2:1, &d, ptu);
     252             : }

Generated by: LCOV version 1.16