Karim Belabas on Sat, 14 Jul 2012 11:03:58 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Potential inconsistent results with fundamental units and KASH 3 |
* Georgi Guninski [2012-07-14 09:56]: > Probably I am missing something, but get strange results. > > In 2.5.1 via sage: > > pr.<x>=ZZ[];K.<a>=NumberField(x^3 - 6*x^2 + 9*x + 1);K.unit_group().gens() > [-1, a^2 - 3*a] > > in KASH 3: > > f:=X^3 - 6*X^2 + 9*X + 1;nf:=NumberField(f);nu:=UnitGroup(nf);gn:=Generators(nu); Apply(x->nu.ext1(x),List(Generators(nu))); > > [ [3, -1, 0], [-1, 0, 0] ] # 3 - a, -1 > > $-1$ is torsion in both cases. > > Is this result consistent? Yes. > If g1= a^2 - 3*a and g2=3 - a I naiively expect to be able to solve either > > (+/- g1)^n = +/- g2 > or > (+/- g2)^n = +/- g1 With n in Z, yes. > Can't solve either for n<=10^4 and the coefficient are growing quite fast. Try n = -1. Btw, bnfisunit() solves this kind of question for you. (10:46) gp > K=bnfinit(x^3 - 6*x^2 + 9*x + 1); (10:46) gp > K.fu %2 = [Mod(x^2 - 3*x, x^3 - 6*x^2 + 9*x + 1)] (10:46) gp > bnfisunit(K,3-x) %3 = [-1, Mod(0, 2)]~ Cheers, K.B. -- Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50 351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/ F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP] `