Georgi Guninski on Sat, 14 Jul 2012 15:36:20 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Potential inconsistent results with fundamental units and KASH 3 |
Thank you! Dumb me... On Sat, Jul 14, 2012 at 11:03:50AM +0200, Karim Belabas wrote: > * Georgi Guninski [2012-07-14 09:56]: > > Probably I am missing something, but get strange results. > > > > In 2.5.1 via sage: > > > > pr.<x>=ZZ[];K.<a>=NumberField(x^3 - 6*x^2 + 9*x + 1);K.unit_group().gens() > > [-1, a^2 - 3*a] > > > > in KASH 3: > > > > f:=X^3 - 6*X^2 + 9*X + 1;nf:=NumberField(f);nu:=UnitGroup(nf);gn:=Generators(nu); Apply(x->nu.ext1(x),List(Generators(nu))); > > > > [ [3, -1, 0], [-1, 0, 0] ] # 3 - a, -1 > > > > $-1$ is torsion in both cases. > > > > Is this result consistent? > > Yes. > > > If g1= a^2 - 3*a and g2=3 - a I naiively expect to be able to solve either > > > > (+/- g1)^n = +/- g2 > > or > > (+/- g2)^n = +/- g1 > > With n in Z, yes. > > > Can't solve either for n<=10^4 and the coefficient are growing quite fast. > > Try n = -1. > > Btw, bnfisunit() solves this kind of question for you. > > (10:46) gp > K=bnfinit(x^3 - 6*x^2 + 9*x + 1); > (10:46) gp > K.fu > %2 = [Mod(x^2 - 3*x, x^3 - 6*x^2 + 9*x + 1)] > (10:46) gp > bnfisunit(K,3-x) > %3 = [-1, Mod(0, 2)]~ > > Cheers, > > K.B. > -- > Karim Belabas, IMB (UMR 5251) Tel: (+33) (0)5 40 00 26 17 > Universite Bordeaux 1 Fax: (+33) (0)5 40 00 69 50 > 351, cours de la Liberation http://www.math.u-bordeaux1.fr/~belabas/ > F-33405 Talence (France) http://pari.math.u-bordeaux1.fr/ [PARI/GP] > `