Loïc Grenié on Thu, 18 Dec 2014 14:40:31 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Factoring in unique factorization domains |
2014-12-18 13:50 GMT+01:00 Andrew Lelechenko <andnrew.lelechenko@gmail.com>: > What is the best way to factor integers in quadratic rings, which are unique > factorization domains, using PARI/GP? Should I use idealfactor() with > nfinit()? Yes and you need to then use bnfisprincipal after a bnfinit: ? K=bnfinit(x^2-101); ? fac=idealfactor(K,65) %2 = [ [5, [5, 2]~, 1, 1, [2, 50; 2, 0]] 1] [ [5, [7, 2]~, 1, 1, [0, 50; 2, -2]] 1] [[13, [-5, 2]~, 1, 1, [-6, 50; 2, -8]] 1] [ [13, [7, 2]~, 1, 1, [-5, 50; 2, -7]] 1] ? bnfisprincipal(K,fac[1,1])[2] %3 = [-5, -1]~ ? bnfisprincipal(K,fac[2,1])[2] %4 = [4, -1]~ ? bnfisprincipal(K,fac[3,1])[2] %5 = [4, 1]~ ? bnfisprincipal(K,fac[4,1])[2] %6 = [-3, 1]~ ? nfeltmul(K,nfeltmul(K,%3,%4),nfeltmul(K,%5,%6))/65 %7 = [1, 0]~ Obviously the last one is a unit, not necessarily 1... Hope this helps, Loïc