Bill Allombert on Mon, 11 Sep 2023 13:55:21 +0200
|
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Power (^) function speed depending on argument types
|
- To: pari-users@pari.math.u-bordeaux.fr
- Subject: Re: Power (^) function speed depending on argument types
- From: Bill Allombert <Bill.Allombert@math.u-bordeaux.fr>
- Date: Mon, 11 Sep 2023 13:50:25 +0200
- Arc-authentication-results: i=1; smail; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1694433019; c=relaxed/relaxed; bh=O1EjNUO5LPAJ8mIuJwi0BRGeM22bmbIfKFip0FCrQOc=; h=DKIM-Signature:Date:From:To:Subject:Message-ID:Mail-Followup-To: References:MIME-Version:Content-Type:Content-Disposition: In-Reply-To; b=O2dV2swxEZ7FXCXcXJ2qQ8Ok6yrOoj6jsF01FOHvqZA+AjDtrjgGgB5V8lF7q3PYb390peLDDVmNZe+DNE7O/xBVvFVw/mdDSOW8SCs4g25EQfbUkV09YIhC+YqVV7wbfrK14a0LD7KzrBw/fhmmiXoSGBMtcoUqDwxLUoFsU8xtbVu2WutZYscrLIf2xW7YtEbNBsjFxfEbhuPNND+N5J1uGfSIZbahvLHLk3QVgWXO+gYhcsKB0esg8MvoAdsw+MDVIlmg9xgB1tX/ePgDc/DBseCUvT+XfLpRZNFjMOXiWXJ7CNyhLxkDWWKQ8lhcBWpDb02pUNt8hFdqRC8emrkvW0rZGcbQQdZwXrTXhJsqTPbBFP3hy0kjWPzYs5SW0bcgj08PgXq1HjcmT0AGBgVhqohHDOkIwfGWZjPZwp4b13ugEbKYwM89zY6jqF/3OzCoWJiS1qsEdd2nsY7dPDjqvQIamSLHjv43+koDLZ2TKwnDr+3QS334k59RoN2VfR5T9481n0XeScVe3/knQVkojViVpIFgRJg7ZAjMljmuzma0BoQZBezEvwcnhR2ngkF3iVMqVvWpqaSAlDidbTZCy56eIOch6Lo92mo3BpM98aWzXnLKJWlCXBXXEstoxjqfJVvCTEE440QFSlSYiXwDY0GKg0z+176SocNcRjU=
- Arc-seal: i=1; a=rsa-sha256; d=math.u-bordeaux.fr; s=openarc; t=1694433019; cv=none; b=bk3KMzBS1uIrLo8OCgrVuDsmCmnVtMzGtjRpakR6aY9vabIpK//XywmisG86uYtk+jfNLdOxSaNcueD2CnBIzzjSbWhQxGbxY44ICZEpkKlJJBmsJU0qT7qLZ7H77MtMotrKF5qmGuZj+KUKmt/CLRSU0TbLdS327N0pJhP0duou8P99KprcjvgFKD4gr+44/LcMzwkrILieJfQT71hpwfCYNJ3lujr2C2KSPkk5GQwiUzwDD7F6SQaGLL69wgnz46uqwXw8iFvvn/+s9hDmGxqsKq2Ld+q0LrrgsJQMn+/dhOkLtZjbmfoBPrfQS59sR4iHecVvQD1qyouq7IBupgJKE58qAvjh51fiZ71UNNu1usnIfd/qPkSno0zQDjRWtCf2sBeExAsReo+n9yQv3+JU3F0nLjmEQGSjXHKiA5tjFjHgtxbwzJq60pSJsP9i02Y0yB17TNd63B/1VrDXPhHLO3yy4iZJ47XNBTOi1U8d8QBoyd4CJOsJqkPazI+4994TBZtNh1Xtfu5R4I3YfrvsK6cD8W0rZbrp9bppyf6Tydovk7qqyu+AC4gzhJnxldpHgGWxk6ykjQZl6ziZYAB61/lirBpZS1f3t3pMmkIyQfdbO4o14XEiFW634vBDFmS3V9Fexwy/MwFpbdBomAv7kGFn1VouC2qpHZluR18=
- Authentication-results: smail; dmarc=none header.from=math.u-bordeaux.fr
- Authentication-results: smail; arc=none
- Delivery-date: Mon, 11 Sep 2023 13:55:21 +0200
- Dkim-signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=math.u-bordeaux.fr; s=2022; t=1694433019; bh=O1EjNUO5LPAJ8mIuJwi0BRGeM22bmbIfKFip0FCrQOc=; h=Date:From:To:Subject:References:In-Reply-To:From; b=nzyzxeNrrbeQrEnAMWGt6tjlgLq69BcUIFhLm8r3hW7+zbPcILF507dHX/TFllBd7 UHL4jdWglCihigBpqNkJvoFTh9CiCsA2Sz4KG6aCG0uH4Ht28+NnTaBaO+yQ0IF06y qo/9+sRW1A/L8hlKYCy+h/XxpzG21/0vICOQTCjT6tNXnGMvWJa78bazDhukeMxa13 oT4pZIb5Qv7O6jxtTt/HBu8rX9fqoXs8mYdrEIpVCU9w3FPxw7OLyxUyD+G7FOIUV0 ebzRwYCCs6i30wYA6kbIkz6lqE3LVOxlgGTTmj4NKgBpi75RTdXATVXGMRHaf8NsE7 wnVIdqlNXzmiBpGE98BRu+6G0mYkap5r2s7FyJRJ3Yo2IBLQjdXp4aiIuGa6tYY3KK Komf25QS+oqkNPh1bbEalOJdT/jQFjQ2+O0065PGX5ToAB7Zl5Ocn830EbtrTgqL62 59GUVWzxCZXzFtMUK1ICQaPyerD/Yv+AnAn1ItNHvY+EvwT607Xk/CRYjJVBeR6fPs SP6qJEapbFrZLSRF6SQcuPj1EGD2OWleABbgQ+q/OCu3vdSniQ52bwECaqTpg0y/wd SFkE6itunGwQZXpPh+ysAZsTRLd7NAwPUyueGZH9oP4StBwT9EBddROQD8nvRP24Bj Z0OcMkhjp3jOzOqnGGAmoMQQ=
- In-reply-to: <2093030652.9384973.1694430327575.JavaMail.zimbra@unicaen.fr>
- Mail-followup-to: pari-users@pari.math.u-bordeaux.fr
- References: <CAEn4z=7cVuuh-mxX9juiexKpty=9_-prUnF9-q2NYO5yxdbY7A@mail.gmail.com> <ZP4u14Spwnw6uhu0@seventeen> <2093030652.9384973.1694430327575.JavaMail.zimbra@unicaen.fr>
On Mon, Sep 11, 2023 at 01:05:27PM +0200, Denis Simon wrote:
> Hi,
>
> what we learn with this example, is that the function
> (x) -> x^(1/5)
> can increase the precision of x when x is a t_REAL.
In this instance it is the addition of a small t_REAL with a large exact integer
that cause the precision increase.
? precision(Pi)
%1 = 38
? precision(100+Pi)
%2 = 57
x^(1/5) role here is that it keeps the t_REAL small while the integer gets larger.
? precision((100+Pi)^(1/5))
%12 = 57
? precision(100+(100+Pi)^(1/5))
%13 = 77
Cheers,
Bill.