| Karim Belabas on Mon, 11 Sep 2023 14:01:20 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: Power (^) function speed depending on argument types |
Hi Denis, actually, the only command that increases the precision there is the addition s + i; we add to the t_REAL s the t_INT i which has - infinite accuracy (obviously) - larger exponent than s after the first few loops So the result s + i has a larger precision than s (in fact, the bitprecision increases by 64 which is the minimal amount), raising that to the power 1/5 keeps that precision. But the next loop with the new s increases it again. In practice, the precision increases by 64 bits every loop. Cheers, K.B. * Denis Simon [2023-09-11 13:05]: > Hi, > > what we learn with this example, is that the function > (x) -> x^(1/5) > can increase the precision of x when x is a t_REAL. > > Is it true for all x t_REAL ? > For which values is this still true, instead of 1/5 ? > > Denis SIMON. > > ----- Mail original ----- > > De: "Bill Allombert" <Bill.Allombert@math.u-bordeaux.fr> > > À: "pari-users" <pari-users@pari.math.u-bordeaux.fr> > > Envoyé: Dimanche 10 Septembre 2023 23:02:15 > > Objet: Re: Power (^) function speed depending on argument types > > > On Sun, Sep 10, 2023 at 11:40:22PM +0300, Дмитрий Рыбас wrote: > >> Hi All, > >> > >> I observe the following > >> > >> ? s=0.0;n=2000;for(i=1,n,s=(s+i)^(1/5)); > >> *cpu time = 4,148 ms,* real time = 4,148 ms. > >> ? s=0.0;n=2000;for(i=1,n,s=(s+i+0.0)^(1/5)); > >> *cpu time = 51 ms,* real time = 51 ms. > >> ? s=0.0;n=2000;for(i=1,n,s=(s+i)^(0.2)); > >> *cpu time = 70 ms,* real time = 73 ms. > >> ? s=0.0;n=2000;for(i=1.0,n,s=(s+i)^(1/5)); > >> *cpu time = 50 ms,* real time = 49 ms. > >> ? > >> > >> Please advise why the difference in computation time is so drastic? > > > > You are not computing s with the same accuracy! > > > > ? s=0.0;n=2000;for(i=1,n,s=(s+i)^(1/5));precision(s) > > %10 = 38281 > > ? s=0.0;n=2000;for(i=1,n,s=(s+i+0.0)^(1/5));precision(s) > > %11 = 57 > > > > Cheers, > > Bill. -- Pr. Karim Belabas, U. Bordeaux, Vice-président en charge du Numérique Institut de Mathématiques de Bordeaux UMR 5251 - (+33) 05 40 00 29 77 http://www.math.u-bordeaux.fr/~kbelabas/