Kevin Acres on Fri, 09 Feb 2024 13:02:22 +0100 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
Re: Rational exponent |
Kevin. On 2024-01-31 23:59, Kevin Acres wrote:
I have a function that I would like to use with rational exponents. Currently it only works with integral exponents. I'm struggling a little and any help is welcomed. Kevin. /* * z : Integer input 0..2^n-1 * p : irreducible polynomial of degree n * n : output is in binary format 0..2^n-1 * e : exponent */ fn2(z,p,n,e) = { my(s,t=vector(n)~,k,a); if(z==0, return(t~);); k = Pol(binary(z))^e; a = lift(Mod(k, p)); s=Vecrev(a); s *= denominator(s); s %= 2; for(i=1,#s, t[i]=s[i]; ); t~; };
A short example for an exponent of -1. Ideally I need to be able to use rational exponents instead of -1.
for(i = 1, 10, r = fn2(i-1, poly, e, -1); print([i, poly, e, -1, r]); ); [1, x^6 + x^4 + x^3 + 1, 6, -1, [0, 0, 0, 0, 0, 0]] [2, x^6 + x^4 + x^3 + 1, 6, -1, [1, 0, 0, 0, 0, 0]] [3, x^6 + x^4 + x^3 + 1, 6, -1, [0, 0, 1, 1, 0, 1]] [4, x^6 + x^4 + x^3 + 1, 6, -1, [1, 1, 1, 0, 1, 1]] [5, x^6 + x^4 + x^3 + 1, 6, -1, [0, 1, 1, 0, 1, 0]] [6, x^6 + x^4 + x^3 + 1, 6, -1, [1, 1, 1, 0, 1, 1]] [7, x^6 + x^4 + x^3 + 1, 6, -1, [1, 1, 1, 0, 1, 1]] [8, x^6 + x^4 + x^3 + 1, 6, -1, [1, 0, 1, 1, 1, 1]] [9, x^6 + x^4 + x^3 + 1, 6, -1, [1, 1, 0, 1, 0, 0]] [10, x^6 + x^4 + x^3 + 1, 6, -1, [1, 1, 1, 0, 1, 1]]