| Bill Allombert on Fri, 23 Jun 2023 13:22:37 +0200 |
[Date Prev] [Date Next] [Thread Prev] [Thread Next] [Date Index] [Thread Index]
| Re: How to compute "Mod(2^(n+1), n)" for very big n? |
On Thu, Jun 22, 2023 at 07:30:27AM +0200, hermann@stamm-wilbrandt.de wrote: > Anyway, here is gp session (with definition of function "fact()" factoring > given sum and product): > > RSA_numbers_factored/pari:$ gp-2.15 -q > ? \r RSA_numbers_factored > ? [l,n,p,q] = rsa[3][1..4]; > ? [l, l==#digits(n) && n=p*q] > [100, 1] > ? d2 = 2 * sqrtint(n) > 78041143710802531024579146678968742037810013800388 > ? #digits(p+q) > 50 > ? #digits(p+q-d2) > 47 > ? znlog(Mod(2, n)^(n+1-d2), Mod(2, n)) > 28775177062023928913461369238354205970422561872 > ? ## > *** last result computed in 11h, 12min, 15,497 ms. Well, if you do addprimes([p,q]) it only take 45 minutes. so taking 10h30 to factor RSA100 is not that bad. Cheers, Bill.